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ABSTRACT

A quantitative framework and numerical methodology
were developed to characterize vertical habitat util-
ization by large pelagic animals and to estimate the
probability of their capture by certain types of fishing
gear. Described are the steps involved to build ‘vertical
habitat envelopes’ from data recovered from an elec-
tronically tagged blue marlin (Makaira nigricans) as
well as from a longline fishing gear experiment
employing temperature–depth recording devices. The
resulting vertical habitat envelopes, which integrate
depth and temperature preferences of tagged fish, are
conducive for comparative studies of animal behavior
and for calculation (and visualization) of degrees of
overlap – be it among individuals, species or fishing
gear. Results of a computer simulation evaluation
indicated our numerical procedure to be reliable for
estimating vertical habitat use from data summaries.
The approach appears to have utility for examining
pelagic longline fishing impacts on both target and
non-target species and could point to ways of reducing
bycatch via modification of fishing strategy or gear
configuration.

Key words: blue marlin, numerical estimation,
satellite tags, vertical habitat.

INTRODUCTION

While critical for defining, assessing and ultimately
managing fish stocks, relevant data on fish movement
(e.g. migration pathways, foraging behavior, habitat
preferences) are among the most difficult and expen-
sive to obtain. Quantifying the movements of large
pelagic fishes, such as the billfishes (Istiophoridae), is
particularly challenging given their low densities,
highly migratory behavior and the vast, dynamic
nature of the environment that they inhabit. Until
recently, most of what is known about billfish move-
ment has been gleaned from conventional (e.g. plastic
streamer) tags that have been attached and recovered
by fishers (Ortiz et al., 2003). If recovered, these tags
can reveal little more than the net distance traveled
and time elapsed between tagging and recovery loca-
tion – the path taken, including the depths visited by
the fish, are unknown. New electronic tagging tech-
nologies, however, are helping to reveal aspects of
pelagic fish behavior as never before (see Sibert and
Nielsen, 2001 and papers therein; Jonson et al., 2003).
Among the most significant developments is the pop-
up satellite archival transmitting (PAT) tag (Block
et al., 2001). Once attached to a fish, current PAT tag
technology can: (i) sample temperature, depth (pres-
sure) and light levels at user-defined time intervals
(e.g. seconds to minutes) and then store and process
these data; (ii) detach from its bearer after a user-
defined time duration (e.g. weeks to months); and (iii)
after floating to the surface, transmit either raw data or
processed summaries of their archived information to
satellites, which subsequently communicate these data
back to the research team. As PAT tags eliminate the
need for recovery of the tag itself, they represent a
truly fishery-independent means of obtaining move-
ment data on pelagic fishes in their natural environ-
ment.

Increasingly, PAT tags are being used to gather data
on horizontal and vertical movements of pelagic fishes
in relation to conditions and/or features of their bio-
physical environment (Brill and Lutcavage, 2001; Brill
et al., 2002) as well as to address questions of post-
release mortality (Graves et al., 2002; Kerstetter et al.,
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2003). In practice, however, there is great uncertainty
when estimating the horizontal movement track of a
PAT-tagged fish, because longitude and latitude must
be inferred from underwater light levels, and these are
subject to great variation at any given location (Musyl
et al., 2001). In contrast, characterizing the vertical
movement of PAT-tagged fishes in sea water is relat-
ively clear-cut. This is because, given concurrent
temperature and pressure measurements made by the
tag (and assuming near-constant oceanic salinity
conditions), depth can be estimated with a high degree
of accuracy and precision (manufacturers claim sensor
depth and temperature resolution are 0.5 m and
0.05�C, respectively). Species-specific knowledge of
vertical habitat utilization is especially important
when considering high-seas fishing impacts on popu-
lations of targeted fishes as well as those caught as
bycatch. To date, however, relatively little has been
done with PAT tag-collected data to characterize
depth and temperature preferences of pelagic fishes
beyond simple plots of depth and temperature versus
time and/or histograms of total time spent within
depth and temperature bins.

We present a quantitative approach towards verti-
cal habitat characterization that integrates the thermal
and depth preferences of one or more PAT-tagged
animals. The method enables the construction of
three-dimensional ‘vertical habitat envelopes’ from
summarized or raw PAT tag data streams, which in
principle are conducive for making temporal, spatial,
gender, size and/or species comparisons as well as for
quantifying the probability of encounter with certain
types of fishing gear. In this paper, we first provide a
detailed description of data and the algorithm. Sec-
ond, we evaluate the algorithm with simulated depth
and temperature data. Third, we calibrate the algo-
rithm with minute-by-minute depth and temperature
data from a physically recovered PAT tag that was
attached to an Atlantic blue marlin (Makaira nigri-
cans) for 38 days and that also successfully communi-
cated its data, in summary form, back to our research
team. Finally, we provide an example of the potential
utility of this approach for quantifying animal-gear
interactions.

METHODS

There are currently two PAT tags available on the
market: one manufactured by Microwave Telemetry
(MT, Columbia, MD, USA) and the other by Wildlife
Computers (WC, Redmond, WA, USA). Both com-
municate with the ARGOS satellite system and
have similar external appearances, sensors, sampling

frequency capabilities, power requirements and trans-
mission rates. Where the MT and WC tags differ is in
how they handle their respective data streams, which
ultimately affects the resolution of data and the dur-
ation for which each tag type can be usefully deployed.
In this study, we describe data and methods as they
apply to WC-PAT tags. The approach designed into
this tag type is to perform data summarization
‘onboard’ the tag to reduce the size of the data set
which needs to be transmitted. This allows for
deployment durations of months rather than days.
Although only summarized data are transmitted, the
archived data set is still retained in its entirety in the
rare event that the tag is physically recovered.

Data and algorithm description

For each user-defined time block (e.g. 1, 3, 6, or
12 h), the WC tag data processing software (i) com-
putes the proportion of time the tag spent within 12
user-defined depth bins (D), (ii) computes the
proportion of time the tag spent within 12 user-
defined temperature bins (T), and (iii) extracts tem-
perature and depth minima and maxima at eight
depth intervals that range between, and are inclusive
of, the shallowest and the deepest depth visited by the
fish (i.e. depth–temperature profile, DTP). The tag
software also extracts portions of the light-level data
that encompass sunset and sunrise for purposes of
horizontal geolocation estimation; however, these
data are not considered in this paper. Characteriza-
tion of the vertical habitat of WC-PAT-tagged
animals is usually depicted in separate time-at-tem-
perature and time-at-depth histograms (Fig. 1a,b
respectively) and/or plots with depth and temperature
minima and maxima on the y-axis and time on the
x-axis. In some cases, depth–temperature profiles
(Fig. 1c) showing vertical temperature distributions as
sampled by the PAT tag are also presented. While it
is critical to consider each separately, we saw utility in
also integrating the D, T and DTP summary infor-
mation into a depth–temperature matrix of time
(DTM) or ‘vertical habitat envelope’ matrix
(Table 2). Specifically, each matrix has a 12 · 12
structure (corresponding to the 12 temperature and 12
depth bins defined by the user), and each cell repre-
sents the proportion of time (e.g. average time, total
time) spent by the tagged animal at each tempera-
ture–depth combination. If a tag is physically recov-
ered, it is possible to create the DTM by simply
summing and tabulating the amount of time for each
cell from the minute-by-minute data records for each
pooled time interval (e.g. 6 h). However, physical
recovery of a given PAT tag is exceedingly rare, and
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there is no algebraic solution for calculating the DTM
from the summarized data alone. To address these
problems, we used a Bayesian approach to develop a
numerical approximation scheme for estimating the
DTM from summarized data. The scheme incorpor-
ates the following algorithms.

The time-at-depth histogram for a time interval
can be expressed as a prior probability density function
P[D]:

P½D� ¼ ½d0; d1; d2; . . . ; dj; . . . ; d11�; ð1Þ
where dj is the fraction of time the fish spent at depth
bin j, and

Pj¼11
j¼0 dj ¼ 1. The depth bin ranges (in

meters) for this study were programmed prior to the
PAT tag deployment as:

DbinðjÞ ¼ ½�40��1; 0� 25; 26� 50; 51� 75;

76� 100; 101� 125; 126� 150; 151� 175;

176� 200; 201� 225; 226� 250; 251� 1000�:

The first depth bin was set to the negative value
because the software on the PAT tag uses this to
correct the depth sensor drift.

The time-at-temperature histogram for a time
interval can be expressed as a prior probability density
function P[T]:

P½T� ¼ ½t0; t1; t2; . . . ti; . . . ; t11�; ð2Þ

where ti is the fraction of time the fish spent at tem-
perature bin i, and

Pi¼11
i¼0 ti ¼ 1. The temperature bin

Figure 1. Examples of satellite-transmit-
ted data summaries: (a) time-at-tempera-
ture histogram, T; (b) time-at-depth
histogram, D; and (c) depth–temperature
profile DTP.
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ranges (�C) for this study were programmed prior to
the PAT tag deployment as:

TbinðiÞ ¼ ½�1� 12; 12:1� 14; 14:1� 16; 16:1� 18;

18:1� 20; 20:1� 22; 22:1� 24; 24:1� 26;

26:1� 28; 28:1� 30; 30:1� 32; 32:1� 60�:

The DTP data can be expressed as three arrays:

PD ¼ ½pd0; pd1; . . . ; pdk; . . . ; pd7�; ð3Þ
PTmin ¼ ½tm0; tm1; . . . ; tmk; . . . ; tm7�; ð4Þ

PTmax ¼ ½tx0; tx1; . . . ; txk; . . . ; tx7�; ð5Þ
where pdk is the depth in meters, tmk is the minimum
temperature and txk is the maximum temperature (�C)
of DTP bin k. We linearly interpolated the minimum
and maximum temperatures from the DTP data to
create a 2-by-12 array of minimum and maximum
temperatures that matched the 12 depth bins of the
time-at-depth histogram:

DTP ¼

Tminð0Þ Tmaxð0Þ

..

. ..
.

TminðjÞ TmaxðjÞ

..

. ..
.

Tminð11Þ Tmaxð11Þ

2
6666664

3
7777775
: ð6Þ

The DTM is defined as a two-dimensional array of
12 · 12 elements:

DTM i; jð Þ ¼

a0;0 � � � ai;0 � � � a11;0

..

. ..
. ..

.

a0;j � � � ai;j � � � a11;j

..

. ..
. ..

.

a0;11 � � � ai;11 � � � a11;11

2
6666664

3
7777775
; ð7Þ

where ai,j is the fraction of time that the fish spent in
temperature bin Tbin(i) and depth bin Dbin(j) for the
time interval, and can be expressed as a joint prob-
ability of P[Ti and Dj]:

ai;j ¼ P½Ti and Dj� ¼ P½Ti� � P½DjjTi� ¼ P½Dj� � P½TijDj�:
ð8Þ

From Bayes’ Theorem (Baskin, 1986) we have:

P½DjjTi� ¼ P½Dj� � P½TijDj�=
X

j

P½Dj� � P½TijDj�; ð9Þ

P½TijDj� ¼ P½Ti� � P½DjjTi�=
X

i

P½Ti� � P½DjjTi�; ð10Þ

where P[Ti] and P[Dj] are observed and P[Dj|Ti] and
P[Ti|Dj] are unknown. Substitute eqn 8 into eqns 9
and 10, and we have:

P½DjjTi� ¼ aij

X
j

aij ð11Þ

P½TijDj� ¼ aij

X
i

aij: ð12Þ

Based on the above Bayes’ formula, we developed a
computer algorithm to iteratively estimate the DTM
with IDL software (Interactive Data Language;
Research Systems Inc., Boulder, CO, USA). We first
initialize the temperature distribution of each depth bin
(i.e. P[Ti|Dj]k¼0) with a type of probability distribution
H between the minimum and maximum temperature of
the depth bin provided by the DTP. Three types of H
(uniform, normal, and triangle) were examined
(Fig. 2a). Certain parameters are required to generate
random values for the three initial functions. For the
uniform function, only minimum (a) and maximum (b)
temperatures are required whereas median temperature
(c) is also required for the triangle function. For the
normal function, the mean (u) and standard deviation
(r) are required, which were approximated by u ¼
(a + b)/2 and r ¼ (b ) a)/4. The uniform and triangle
functions generate values between a and b, while the
normal function generates values between ±¥. Thus,
the tails of the normal function were truncated at a and
b. For simplicity, we used the uniform distribution as an
example here. We first used the random uniform
function (RANDOMU) from the IDL function library
to generate 360 (minutes in 6 h) random temperatures
(Tran) between the minimum (Tmin) and maximum
(Tmax) temperatures from DTP:

Tran ¼ TminþðTmax�TminÞ �RANDOMU(seed;360Þ;

where ‘seed’ is an integer variable for the random
number generator. Next, we used the HISTOGRAM
function to make a probability density function which
matches the bin size of the P[T]:

H ¼HISTOGRAM

ðTran;min ¼ 10;max ¼ 32; bin ¼ 2Þ=360;

where P[Ti|Dj]k¼0 ¼ H. Then, with eqn 8, we ini-
tialized the DTM as:

âij;k¼0 ¼ P½Dj� � H: ð13Þ

We substituted aij in eqn 11 with âij;k¼0 to estimate
P[Dj|Ti]k¼1:

P½DjjTi�k¼1 ¼ âij;k¼0=
X

j

âij;k¼0 ð14Þ

and substituted P[Dj|Ti]k¼1 into eqn 8 to estimate
âij;k¼1:

âij;k¼1 ¼ P½Ti� � P½DjjTi�k¼1 ð15Þ
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and substituted âij;k¼1 into eqn 12 to estimate
P[Ti|Dj]k¼1 :

P½TijDj�k¼1 ¼ âij;k¼1=
X

i

âij;k¼1 ð16Þ

and substituted P[Ti|Dj]k¼1 into eqn 8 to make an-
other estimate of âij;k¼1:

âij;k¼1 ¼ P½Dj� � P½TijDj�k¼1: ð17Þ

We then applied eqns 14 through 17 sequentially
until P[T] and P[D] are arbitrarily close to

P
j âij and

P
i âij or the simulation step k equal to 1000. The

complete routine written in IDL is provided in
Appendix 1.

Algorithm evaluation

We first used a simple example to validate the per-
formance of the algorithm (Appendix 2). Then, we
used computer simulation to test the algorithm for a
variety of plausible time-at-depth, time-at-tem-
perature, and DTP configurations. At two extreme

Figure 2. (a) Three types of initial
temperature distribution functions
(normal solid, triangle dashed, uniform
dotted), (b) hypothetical vertical tem-
perature distribution, (c) three hypo-
thetical vertical probability density
distributions for the fish (i.e. DP1 solid,
DP2 dotted, DP3 dashed).
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situations, specifically when (i) temperature is uniform
within the water column, or (ii) a pelagic animal re-
mains at a constant depth, we can determine the
DTM without estimation. For the purpose of illustra-
tion, we assumed a vertical mean temperature profile
(Fig. 2b) with a normal temperature probability
density function for each depth bin, and three depth-
distribution probability density functions P[D]
(Fig. 2c, DP1, DP2 and DP3). Combining the tem-
perature and depth-distribution probability functions,
we have a bivariate joint probability density function
pdf (T, D) for each depth function (Fig. 3). We ran-
domly simulated the temperature distribution for each
depth bin at four levels of temperature variation
(sigma ¼ 0.25, 0.5, 1.0, 2.0) to make a hypothetical
‘true’ DTM for each of the 12 scenarios (3 depth
profiles · 4 temperature variation scenarios). From
the ‘true’ DTM, we calculate P[T] and DTP with 0.5%
truncation of each tail. Then, we used P[D], P[T], and
DTP as inputs to our algorithm to make an estimated
matrix (DTMX) of the corresponding ‘true’ DTM with
three different initial temperature distribution func-
tions (Fig. 2a).

Algorithm calibration

We also calibrated the algorithm using data collected
while the tag was attached to a real fish. The computer
algorithm to estimate DTM is useful because typically
only D, T, and DTP data are available to researchers
using WC-PAT tags. However, on June 3, 2003, our
research team was very fortunate to physically recover
a WC-PAT tag that (i) was attached to a blue marlin
in the vicinity of St Thomas, US Virgin Islands on
Oct 12, 2002; (ii) recorded and archived depth, tem-

perature and light levels for over 56 000 consecutive
minutes; and (iii) detached about 800 km SSW of the
tagging location off the coast of Honduras where it
successfully communicated its summary data (i.e. D, T
and DTP) via the satellite system. Excluding the data
from the first and last incomplete days, we have 38
complete days of data. We divided the minute-by-
minute data into 6-h intervals to match the summary
data transmitted via satellite. Next, we calculated the
true DTM with the minute-by-minute data for each
6-h time window. Then, we estimated each DTMX
from summarized data with the mean of 100 runs of
the algorithm routine for the same 6-h window. As a
result, we have 152 (38 days · 4 time windows) pairs
of comparison between the estimated DTMX and the
true DTM.

Application

Finally, we combined the above matrices of diel ver-
tical habitat utilization with similar matrices that
depict the vertical distribution and intensity (i.e. soak
time) of fishing to show the potential utility of this
approach for quantifying animal–gear interaction
probabilities. The gear depth–temperature envelopes
were generated from data collected by miniature
temperature–depth recording instruments that were
deployed on independent longline gear experiments
(P. Rice, University of Miami, Florida, unpublished
data). We conducted an experimental longlining
cruise during which miniature temperature–depth
recording instruments (TDRs) were deployed near the
hooks of a longline. In the experiments, the mainline
was 46-km long with 10-m floatlines, 12-m gangions
and 560 baited hooks. A TDR was placed about 1.8 m

Figure 3. Joint bivariate probability density function for three hypothetical vertical fish distributions at r ¼ 2.0: (a) DP1; (b)
DP2, and (c) DP3.
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above (i.e. proximal to) every 13th hook. Use of the
TDRs allowed us to construct a DTM for this gear.
Subsequently, we calculated, purely for illustrative
purposes, the theoretical time that fish and hooks
would have overlapped had the two DTMs been
coincident by element-to-element multiplication of
the gear DTM with each 6-h window of fish habitat
DTM.

RESULTS

In the simulation experiment, we ran 1000 simulations
for each combination of P[D] and sigma with three
initial temperature distribution functions described in
the Methods section. To compare the difference in
minutes per 6 h between DTMX and DTM, we first
calculated the absolute difference matrix [AD-
M(i, j) ¼ |DTMX(i, j) ) DTM(i, j)|] for each simu-
lation, then calculated the sum [Sm ¼

P
i;j

ADMði; jÞ�
and maximum (Mx ¼ Max{ADM}) for each ADM.
For each scenario, we calculated the mean and
standard deviation of Sm and Mx (N ¼ 1000). The
sum of the absolute difference (Sm) is an indication of
estimation bias for the overall performance of the
algorithm (Table 1a), while Mx indicates the estima-
tion bias for an individual cell (Table 1b). As the
temperature variation (r) of the ‘true’ DTM increased,
Sm increased under all scenarios, while Mx did not

increase when r > 1. This is because the number of
non-zero cells in the matrix increases as r increases,
which enlarges the number of cells that need to be
estimated in the simulation, and spreads the total time
over more cells. Therefore, the cumulative bias over
all the cells (Sm) increases.

Comparing among the three depth-distribution
profiles of the ‘true’ DTM (Table 1a), the differences
in Sm values are small when estimation was carried
out with the normal and the triangle initial tempera-
ture distribution functions and are much larger with
the uniform function, especially when r > 0.25. Spe-
cifically, the DP3 profile is the least biased and DP2
profile is the most. This difference emerges as the
vertical temperature profile (Fig. 2b) and the vertical
fish distribution profiles are combined (Fig. 2c). The
algorithm can solve 24 exact cell values (with no bias)
when they are arranged perfectly as two cells for each
depth bin, and each depth level is offset by one cell.
Therefore, the algorithm is most accurate and bias is at
a minimum in the region where there are substantial
changes (i.e. offset by one cell) in temperature with
depth, in our example, between the depths of 50–
200 m (Fig. 2b). Thus when the fish depth-distribu-
tion maximum overlaps with the region of minimum
bias (i.e. DP3), the overall bias will be less than when
the fish depth-distribution maximum does not coin-
cide with the region of minimum bias (i.e. as in DP2).

Table 1. Mean and standard deviation
(SD) of sum absolute difference (Sm, A)
and maximum absolute difference (Mx,
B) between the estimated depth–tem-
perature matrix (DTMX) and the ‘real’
depth–temperature matrix (DTM) from
1000 simulations for each scenario. The
units are number of minutes per 6-h time
interval. Possible values range from 0 to
360 min.

Depth
profile

Temperature variation (r)

0.25 0.5 1.0 2.0

(a)
Normal DP1 2.8 (1.80) 16.3 (6.82) 32.1 (8.11) 46.8 (7.94)

DP2 4.4 (2.9) 16.2 (6.51) 32.9 (7.78) 47.6 (7.70)
DP3 1.4 (1.07) 14.7 (5.85) 28.5 (7.35) 41.3 (7.16)

Triangle DP1 2.7 (1.85) 14.3 (5.56) 26.7 (7.26) 40.5 (6.83)
DP2 4.4 (2.9) 14.0 (5.22) 26.8 (6.77) 40.3 (6.58)
DP3 1.4 (1.11) 14.3 (5.30) 27.3 (7.73) 39.8 (7.27)

Uniform DP1 3.1 (2.73) 62.1 (2.73) 111.5 (9.21) 134.9 (8.58)
DP2 4.5 (3.39) 71.6 (9.38) 125.7 (10.06) 148.0 (9.05)
DP3 1.5 (1.5) 46.7 (8.51) 76.2 (8.70) 94.5 (7.75)

(b)
Normal DP1 0.54 (0.36) 2.0 (0.96) 3.8 (1.26) 3.9 (0.99)

DP2 0.94 (0.63) 1.9 (0.95) 3.9 (1.30) 4.0 (0.99)
DP3 0.26 (0.26) 1.8 (0.95) 3.4 (1.16) 3.4 (0.95)

Triangle DP1 0.54 (0.38) 1.8 (0.89) 3.3 (1.20) 3.6 (0.93)
DP2 0.95 (0.63) 1.6 (0.72) 3.1 (1.03) 3.8 (0.94)
DP3 0.26 (0.27) 1.8 (0.85) 3.3 (1.20) 3.4 (0.96)

Uniform DP1 0.61 (0.59) 6.1 (1.67) 11.1 (1.25) 8.33 (1.05)
DP2 0.97 (0.72) 7.2 (1.29) 13.6 (1.88) 9.5 (1.78)
DP3 0.30 (0.35) 3.9 (0.93) 6.7 (1.20) 6.0 (0.96)
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Table 2. The average DTMX estimated from satellite-transmitted depth and temperature histograms, and depth-temperature
profile data of blue marlin.

Depth (m)

Temperature (�C)

<12 12.1–14 14.1–16 16.1–18 18.1–20 20.1–22 22.1–24 24.1–26 26.1–28 28.1–30 30.1–32 >32

0:00–5:59 GMT
0–25 0.0 314.3
26–50 1.2 3.2
51–75 1.7 11.6 1.4
76–100 14.4 2.6 0.1
101–125 1.1 7.6 0.1
126–150 0.4 0.1
151–175 0.2 0.1
176–200
201–225
226–250
>250

6:00–11:59 GMT
0–25 264.4
26–50 0.0 0.7 52.7
51–75 0.5 9.3 18.0
76–100 3.0 3.0 0.2
101–125 0.6 1.4 0.0
126–150 0.0 0.9 0.1
151–175 1.0 1.7
176–200 0.2 0.9
201–225 0.8 0.6
226–250
>250 0.1

12:00–17:59 GMT
0–25 0.5 60.4
26–50 2.3 170.9
51–75 0.9 28.2 41.6
76–100 0.3 6.9 3.8 0.1
101–125 8.0 8.1 0.2
126–150 0.1 9.1 0.6
151–175 3.8 2.7 0.1
176–200 0.2 3.7 0.1
201–225 0.1 2.8 1.0
226–250 1.8
>250 1.6

18:00–23:59 GMT
0–25 0.0 129.8
26–50 3.5 153.5
51–75 0.6 16.2 29.9
76–100 7.5 4.5 0.1
101–125 1.1 6.2 0.1
126–150 0.0 3.5 0.2
151–175 0.5 1.5 0.0
176–200 0.0 0.4 0.1
201–225 0.4 0.0
226–250 0.3
>250
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Comparing Sm values for the three initial tem-
perature distribution functions used in estimations,
the uniform distribution performed the worst, and the
triangle distribution performed slightly better than the
normal distribution although the ‘true’ DTM was
generated with a normal distribution function. The
values of Mx (Table 1b) indicated that the bias for any
individual cell was small for all scenarios, especially
under normal and triangle initial temperature distri-
butions (<4 min per 6-h interval).

In the recovered tag data comparison, we also
estimated the DTMX with three initial temperature
distribution functions, and calculated the Sm and Mx
for each of the 152 pairs of estimated DTMX and the
true DTM. To show the performance of the algorithm
against the observed data, Sm and Mx values were
summarized with histograms (Fig. 4a,b). Under all
three initial temperature distribution functions, 55%
of the estimations had both Sm and Mx values equal
to 0 (no difference at all) and about 90% of the esti-
mations had Sm values <20 min and Mx values
<4 min per 6-h interval. Similar to the simulation
experiment, the differences between triangle and
normal functions were very small, and the uniform
function performed worst. With triangle and normal

initial functions, 100% of the estimations had Sm
values <50 min and Mx values <11 min, and with the
uniform initial function, about 4% of the estimates
had bias higher than those values. The small across-
the-board bias contributes to the small temperature
variation in the observed data. From the recovered tag
data, we calculated the temperature standard devia-
tion (st) for each depth bin, and then calculated the
average and maximum of st for each observed DTM.
The average st (Fig. 5a) is <0.3 (�C) for about 50% of
DTM and the maximum st (Fig. 5b) is <1.0 (�C) for
about 90% of DTM, which explains the good perfor-
mance of the algorithm for the observed data.

As the triangle initial temperature distribution
function does not require any approximation of r or
truncation at the tails and it produced the least bias in
computer-simulated data, we will present the matrix
results estimated from this function from here on. It is
impractical for us to show all 152 pairs of DTMs in this
paper, thus we averaged the DTMX and DTM over
38 days for each 6-h time interval (Tables 2 and 3 and
Fig. 6; note that sunset corresponds to approximately
0 hours Greenwich Mean Time (GMT) for the eastern
Caribbean Sea during the deployment period). We
also calculated the ADM between each pair of DTMX

Figure 4. Frequency distributions of the
sum (a) and maximum (b) absolute dif-
ferences (minutes per 6 h) between the
estimated DTMX and the true DTM
from a recovered PAT tag under three
initial temperature distribution functions
(normal white bar, triangle gray bar,
uniform black bar).
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and DTM for each time block and each day, then
calculated average matrix and maximum matrix of
ADM over 38 days. Comparison of results indicates
very small differences between the average DTMX and
DTM (Tables 2 and 3 and Fig. 6). Specifically, the
average absolute differences over the 38 days were
£0.6, 0.6, 1.3, 1.4 min per 6 h for all cells for the four
time periods presented in Table 4, and with a sum of
3.5, 3.0, 13.4 and 7.4 min per 6-h difference over all
cells for each time period, respectively. The maximum
absolute difference over the 38 days (Table 5) indi-
cates the maximum estimation bias over the 38 days
for each cell, and the maximum values for each time
period were 8.6, 4.7, 10.2, and 6.6 min per 6 h,
respectively. Analysis of the patterns of average and
maximum absolute difference indicated that the
maximum bias occurred between 50 and 100 m depth,
which corresponded to the thermocline of the water
column (Fig. 1a) where the maximum temperature
variation occurred.

Both DTM and DTMX indicate the same general
diel pattern of vertical habitat use by the tagged fish.
During complete darkness (i.e. 00:00–05:59 GMT),
the blue marlin spent most of its time in the uppermost
layer of the water column (0–25 m) where tempera-
tures ranged from 28 to 30�C, and the average time it
spent in waters >150 m was <1 min (0.3 min) during

this time window. During the next time period (i.e.
06:00–11:59 GMT), which included both night and
early morning hours, the fish began expanding its
vertical and thermal range (5.3 min). By the third,
late morning–afternoon time period (i.e. 12:00–17:59
GMT), the fish spent about 18 min at depths >150 m
where water temperatures ranged from 18 to 24�C.
Finally, by the late afternoon–evening time period
(i.e. 18:00–23:59 GMT), time spent in ‡150-m, 18–24
�C water was reduced to about 3 min.

Data from TDRs allowed us to construct a similar
DTM for a fishing gear (Table 6; Fig. 7). Element-
to-element multiplication of the two matrices pro-
vides potential overlap time (as overlap minutes per
6-h interval) between fish and gear (Table 7, Fig. 8).
It is assumed here that the gear was fished during
each of the four, 6-h time periods. Again, the scen-
ario is examined purely for illustrative purposes – in
reality, the experimental gear and the fish tag
deployment were separate, independent efforts. Both
total (theoretical) time of fish-gear overlap (i.e. the
sum of all cells) as well as where in the water
column and at what temperatures the overlap occurs
can be gleaned in this manner. In our example,
there are 14 min of fish-gear overlap assuming fish-
ing was conducted during the first time period
(0:00–05:59 GMT). Minutes of overlap for each

Figure 5. Frequency distributions of the
average (a) and maximum (b) tempera-
ture standard deviation (�C) calculated
from the recovered PAT tag for each
depth bin.
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subsequent 6-h time interval are 31, 77 and 70 min,
respectively. The percent of overlap time ranged
from 3.9% to 21.4% with an average of 13.3%

(Table 8), with the greatest amount of overlap
occurring during daylight hours and the least during
darkness.

Table 3. The average DTM calculated from minute-by-minute data obtained via physical recovery of the PAT tag.

Depth (m)

Temperature (�C)

<12 12.1–14 14.1–16 16.1–18 18.1–20 20.1–22 22.1–24 24.1–26 26.1–28 28.1–30 30.1–32 >32

0:00–5:59 GMT
0–25 0.1 314.2
26–50 1.3 3.2
51–75 1.7 11.4 1.5
76–100 14.4 2.6 0.1
101–125 1.2 7.5 0.1
126–150 0.4 0.1
151–175 0.2 0.1
176–200
201–225
226–250
>250

6:00–11:59 GMT
0–25 264.4
26–50 0.8 52.6
51–75 0.5 9.2 18.1
76–100 2.9 3.0 0.3
101–125 0.6 1.3 0.1
126–150 0.1 0.8 0.1
151–175 0.9 1.7
176–200 0.2 0.9
201–225 0.8 0.6
226–250
>250 0.1

12:00–17:59 GMT
0–25 0.3 60.6
26–50 3.4 169.8
51–75 1.2 27.1 42.4
76–100 0.3 6.7 3.8 0.2
101–125 8.4 7.6 0.3
126–150 0.5 8.3 0.9
151–175 3.6 2.9 0.1
176–200 0.5 3.3 0.2
201–225 2.6 1.3
226–250 1.8
>250 1.6

18:00–23:59 GMT
0–25 0.2 129.7
26–50 4.0 153.1
51–75 1.2 15.3 30.3
76–100 7.2 4.7 0.2
101–125 1.3 5.8 0.3
126–150 0.1 3.3 0.3
151–175 0.4 1.4 0.1
176–200 0.1 0.3 0.1
201–225 0.4 0.1
226–250 0.3
>250

218 J. Luo et al.

� 2006 Blackwell Publishing Ltd, Fish. Oceanogr., 15:3, 208–229.



DISCUSSION

Presented here are (i) a quantitative framework for
defining vertical habitat utilization (vertical habitat
envelopes) of large marine animals based on data
recovered from electronic tags, and (ii) a numerical
estimation method for construction of vertical hab-
itat envelopes when only summary data generated by

the WC-PAT tag are available. The vertical habitat
envelope framework and the associated estimation
method allow for the integration of the thermal and
depth preferences of PAT-tagged animals in such a
way that vertical habitat use comparisons are sim-
plified to reduced sets of tabular matrices. These
matrices are conducive for the study of animal
behavior and for calculation (and visualization) of

Figure 6. The average estimated DTMX (a) and the average true DTM (b). The color scale indicates time ranging from 0 to
100 min.
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degrees of overlap – be it among individuals, species
or fishing gear. The method, when applied to sum-
mary data, produced DTM matrices that were virtu-

ally identical to those produced from the much
larger, un-summarized data set. This was encouraging
because data summarization is currently a necessity

Table 4. The average DTM calculated from minute-by-minute data obtained via physical recovery of the PAT tag.

Depth (m)

Temperature (�C)

<12 12.1–14 14.1–16 16.1–18 18.1–20 20.1–22 22.1–24 24.1–26 26.1–28 28.1–30 30.1–32 >32

0:00–5:59 GMT
0–25 0.1 0.1
26–50 0.2 0.2
51–75 0.5 0.6 0.3
76–100 0.5 0.6 0.0
101–125 0.1 0.1 0.1
126–150 0.1 0.1
151–175 0.0 0.0
176–200
201–225
226–250
>250

6:00–11:59 GMT
0–25 0.1
26–50 0.3 0.4
51–75 0.1 0.6 0.5
76–100 0.1 0.2 0.1
101–125 0.1 0.1 0.0
126–150 0.0 0.1 0.1
151–175 0.1 0.0
176–200 0.0 0.0
201–225 0.0 0.0
226–250
>250 0.0

12:00–17:59 GMT
0–25 0.5 0.5
26–50 1.1 1.1
51–75 0.6 1.3 1.2
76–100 0.2 0.5 0.7 0.2
101–125 0.5 0.6 0.2
126–150 0.4 0.8 0.4
151–175 0.4 0.4 0.0
176–200 0.3 0.5 0.2
201–225 0.0 0.3 0.3
226–250 0.0
>250 0.0

18:00–23:59 GMT
0–25 0.2 0.2
26–50 0.7 0.6
51–75 0.6 1.1 0.8
76–100 0.0 0.7 0.7 0.1
101–125 0.2 0.4 0.2
126–150 0.1 0.2 0.1
151–175 0.1 0.1 0.1
176–200 0.0 0.1
201–225 0.0 0.0
226–250 0.0
>250
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for relatively long-term deployments (i.e. >30 days),
and researchers only very rarely physically recover
their PAT tags.

Vertical habitat envelopes can be constructed based
on data from fishing gear experiments that employ
temperature–depth recording devices. Therefore, a

Table 5. The maximum absolute difference between the estimated DTMX and calculated DTM.

Depth (m)

Temperature (�C)

<12 12.1–14 14.1–16 16.1–18 18.1–20 20.1–22 22.1–24 24.1–26 26.1–28 28.1–30 30.1–32 >32

0:00–5:59 GMT
0–25 1.0 1.0
26–50 2.0 2.0
51–75 8.1 6.1 2.0
76–100 8.1 8.1 0.9
101–125 1.0 1.9 1.9
126–150 1.0 1.0
151–175 0.0 0.0
176–200
201–225
226–250
>250

6:00–11:59 GMT
0–25 1.4
26–50 4.7 4.7
51–75 1.0 4.7 4.7
76–100 1.1 1.4 1.4
101–125 1.0 2.0 0.9
126–150 0.9 1.9 1.0
151–175 1.0 1.3
176–200 0.0 0.5
201–225 0.2 0.0
226–250
>250 1.3

12:00–17:59 GMT
0–25 6.5 6.2
26–50 8.2 7.6
51–75 3.8 10.2 8.3
76–100 3.1 2.5 5.4 1.7
101–125 2.5 3.5 1.7
126–150 7.0 9.3 2.5
151–175 7.0 7.0 0.9
176–200 2.0 3.6 1.6
201–225 1.0 2.0 2.0
226–250 0.9
>250 1.0

18:00–23:59 GMT
0–25 1.0 2.0
26–50 4.3 4.3
51–75 6.6 5.8 5.3
76–100 6.6 6.6 2.0
101–125 2.8 3.8 2.6
126–150 1.0 2.8 1.8
151–175 1.0 1.6 1.0
176–200 1.5 1.7 1.0
201–225 1.5 0.9
226–250 0.0
>250
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potentially useful application of this approach is to
allow assessment of the possible effects of changing
fishing strategies (e.g. fishing deeper or at a different
time of day), both on the animals targeted by a given
longline fishery and those unintentionally killed as
bycatch. While PAT-tag technology is being increas-
ingly applied to more individuals of more species, it is
equally important to gather and analyze data on the
dynamics of gear behavior.

The simulation evaluation results indicated that
differing patterns of fish depth distribution (i.e. uni-
modal versus bimodal) as well as the assumed initial
temperature distribution functions (i.e. uniform, tri-
angle or normal) are relatively unimportant in the
estimation of DTM when the temperature variation
(r) is small. More important is the level of tempera-
ture variation within each depth bin which, when
high, can lead to unwieldy increases in the number of

cells requiring estimation. Therefore, estimation bias is
dependent on the magnitude of temperature variation
relative to the temperature and depth bin sizes. Bias is
minimized when most of the temperature variation is
captured within two bins per depth bin. This was the
case in our evaluation of the recovered tag data set
wherein 85 of 152 (55%) estimates had exact solu-
tions. Ideally, WC-PAT depth and temperature bins
are set before tag deployment with some prior know-
ledge of the range of depths and temperatures that the
study animal utilizes. However, more often than not,
the animals ‘surprise’ us with unexpected behaviors
and habitat ranges.

Another limitation of our approach is that the
algorithm requires all three types of summary data
(i.e., the D, T, and DTP) for each time period to
estimate the DTM. In many situations only one or two
of these summary data types are received for a given
time block, thus restricting the number of possible
DTMs that can be estimated. In our example, for the
38 days of deployment (at 6-h time interval resolu-
tion), the probability of receiving all three summary
data types for a given 6-h time period is 83%. Simi-
larly, the transmitted summary data usually have gaps
and/or obviously erroneous data values because of
interruption of satellite coverage. Before applying our
methodology, therefore, appropriate data quality con-
trol/assurance steps must be taken. Also, equal bin
sizes (except for the first and last bins) are preferable to
reduce estimation errors as well as to prevent misin-
terpretation of results. In situations where bins are not
equal, subjective decisions can be used to ‘re-bin’
depth and temperature data into equal intervals;
however, this is best avoided at the planning stage of
the tag deployment. During tag configuration, both

Table 6. Hook distribution matrix. The values are percentages of hooks in each cell.

Depth (m)

Temperature (�C)

<12 12.1–14 14.1–16 16.1–18 18.1–20 20.1–22 22.1–24 24.1–26 26.1–28 28.1–30 30.1–32 >32

0–25 0.432 2.996
26–50 0.08 30.327 40.212
51–75 0.237 18.66 0.954
76–100 2.683 2.885
101–125 0.321 0.033
126–150 0.033 0.137
151–175 0.008
176–200
201–225
226–250
>250

Figure 7. The hook depth–temperature distribution. The
color scale indicates proportion of time ranging from 0.001
to 1.0.

222 J. Luo et al.

� 2006 Blackwell Publishing Ltd, Fish. Oceanogr., 15:3, 208–229.



the depth and temperature bin sizes should be deter-
mined based on available data on the species, the
study region and the duration of deployment. The

objective is to cover as much of the full range of depth
and temperature as possible for each individual while
still having reasonable resolution and consistency for

Table 7. Potential fish and hook overlap time (minutes) per 6-h time period.

Depth (m)

Temperature (�C)

<12 12.1–14 14.1–16 16.1–18 18.1–20 20.1–22 22.1–24 24.1–26 26.1–28 28.1–30 30.1–32 >32

0:00–5:59 GMT
0–25 9.41
26–50 0.39 1.27
51–75 2.13 0.01
76–100 0.39 0.07
101–125 0.02
126–150
151–175
176–200
201–225
226–250
>250

6:00–11:59 GMT
0–25 7.92
26–50 0.25 21.14
51–75 1.72 0.17
76–100 0.08 0.09
101–125
126–150
151–175
176–200
201–225
226–250
>250

12:00–17:59 GMT
0–25 1.82
26–50 1.05 68.28
51–75 5.06 0.40
76–100 0.18 0.11
101–125 0.02
126–150
151–175
176–200
201–225
226–250
>250

18:00–23:59 GMT
0–25 3.89
26–50 1.21 61.56
51–75 2.85 0.29
76–100 0.19 0.14
101–125 0.02
126–150
151–175
176–200
201–225
226–250
>250
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comparisons (e.g. between species, regions, seasons).
As stated above, the optimal bin size is to cover most
of the temperature variation in two bins. This can be
achieved by either increasing the temperature bin size
(e.g. from 2 to 3�C) or decreasing the depth bin size
(e.g. from 25 to 15 m). Either action represents a
trade-off, in resolution or depth range. Fortunately, an
important feature of the open pelagic ocean is that

temperature variation is small within certain depth
ranges.

Considering the potential utility of the vertical
habitat envelope approach, it might be beneficial for
DTM calculation to occur directly onboard the next
generation of PAT tags and for the DTM to be
transmitted via the Argos System in lieu of D, T, and
DTP. This may be feasible because with the DTM, we
can easily reconstruct D, T, and DTP (on land), but
only at the resolution of the depth and temperature
bins defined initially. While transmission of complete
(i.e. 12 · 12) DTM matrices would amount to an
increase in message size, transmission of only non-zero
DTM cells may, in some cases, represent a reduction.

Relevance to pelagic longline fishing

Conceptually, the best fishing strategy is to deploy the
greatest number of baited hooks into the foraging
habitat of the target species when it is foraging. This
approach maximizes encounter probabilities of feeding
fish with baited hooks and hence, catch rates.
Improvements in fishing strategies with pelagic long-
lines have been the result of fishers experimenting
with bait, hooks, time and place fished, and gear
configuration (e.g. length of gangions, length of buoy
lines) during the prosecution of the fishery. Currently,
pelagic longline configurations vary greatly depending
on the species targeted and area fished (Yamaguchi,
1989; Uozumi and Nakano, 1994). On the contrary,
the best conservation strategy for non-fishery targeted
(i.e. bycatch) species would be to deploy gear such that
the greatest numbers of hooks do not overlap the time
of day and depths most utilized during foraging. This
might result in conflicts between fishing strategy and
conservation strategy if each pursues its own objective.
By comparing the vertical habitat envelops of targeted
and non-fishery targeted species, we can apply an
optimization approach to derive a ‘best compromise’
strategy for both fishery and conservation.

Comparisons of fish and gear distributions will assist
us in assessing the catchability of different gear con-
figurations. Total allowable catches for important

1
0

Figure 8. The potential overlap between fishing gear and
blue marlin for each time window. The color scale indicates
time ranging from 0 to 10 min.

Table 8. Summary of potential fish and hook overlap per 6-h time period.

Time period
(GMT) Local time

Total time
(min)

Overlap
time (min)

Hourly overlap
(min/h)

Overlap
time (%)

00:00–05:59 7:00 pm–0:59 am 360 14 2.33 3.9
06:00–11:59 1:00 am–6:59 am 360 31 5.17 8.6
12:00–17:59 7:00 am–0:59 pm 360 77 12.83 21.4
18:00–23:59 1:00 pm–6:59 pm 360 70 11.67 19.4

Average 360 48 8.00 13.3
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international fisheries are determined through fish
stock assessment analyses. The stock assessments typ-
ically use time series of population abundances to
evaluate stock status. Often the catch history by
longline gear is used to construct catch-per-unit-effort
(CPUE) indices for pelagic species that are then used
as proxies for the abundance trend. The evolution of
the longline fisheries resulted in different catchabili-
ties between gear configurations, locations and time
periods. These differences require statistical treatment
to remove such effects to produce a ‘standardized’
series of relative abundances for use in the assessment.
However, the extent to which the temporal and spatial
variability in gear efficiency is removed by the statis-
tical treatment cannot be directly assessed. The actual
overlap of the distributions of the fish and the hooks
are essential elements required to directly assess
catchability differences among gear configurations,
which would be considered as important research
priorities (Goodyear et al., 2003).

We suggest vertical habitat envelopes constructed
with PAT-tagged fish data and gear experiments may
provide concrete data to standardize CPUE in stock
assessments. Recent stock assessments of Atlantic
marlins conducted by ICCAT indicate that the stock
biomass is much reduced from the early years of the
fishery and that the stocks are considered to be signi-
ficantly overfished (Anonymous, 2001). However,
applications of recently developed habitat standard-
ization methods (e.g. Hinton and Nakano, 1996;
Yokawa et al., 2001; Yokawa and Takeuchi, 2003) that
attempt to directly account for the overlap between the
species and hooks conflict with the results of the sta-
tistical CPUE standardizations used in the assessments
(Goodyear, 2003). The different outcomes of the two
CPUE standardization approaches foster uncertainty in
the status of the stocks and complicate difficult man-
agement decisions. The habitat standardizations are
currently subject to criticism because of simplistic
assumptions about the distribution of the gear and the
distribution and behavior of the fish (Goodyear et al.,
2003). Also, habitat standardizations with inappropri-
ate assumptions about these distributions can produce
misleading results (Goodyear, 2003).

In conclusion, the use of PAT data to define habitat
envelopes such as those developed in this paper pro-
vides a powerful tool for better understanding the
interaction between these species and longline fishing
gear. We have presented a method to quantitatively
define the degree of overlap between blue marlin
habitat and longline fishing gear. This overlap indi-
cates a level of potential interaction (measured as
time) that varies by time of day because of the

marlin’s diel activity cycle. Accumulation of addi-
tional observations will permit analyses of the tem-
perature–depth distributions of this and other large
pelagic animals that may lead to models that can
predict spatial distributions of multiple species
throughout their range. Similar data on the distribu-
tions of hooks as a function of gear configuration,
locations fished, and other relevant factors may lead to
models to predict the vertical distribution of longline
hooks by the fishery. Integration of these distributions
will likely lead to a better understanding of the
interaction of the gear and pelagic animals. Specific-
ally, they might result in better evaluations of tem-
poral trends in the relative abundances of the species
using methods based on habitat utilization by the fish
and gear (hook) distributions. Additionally, in com-
bination with a greater understanding of the feeding
ecology of bycatch species, it may be possible to
modify the fishing gear configuration and/or strategy to
lower the number of interactions between the gear and
bycatch species and thus potentially reduce fishing
mortality on non-target stocks. Thus, it may be poss-
ible to incorporate the results of vertical habitat
envelope analyses into the management process.
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APPENDIX

Appendix 1. Computer code written in IDL for estimation of depth temperature matrices.
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Appendix 1. Continued.
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APPENDIX 2

Algorithm validation

We first used a simple example to validate the process
of the algorithm. Assume we have a known DTM of:

DTM ¼

0 0:15 0:02
0 0:55 0:08

0:05 0:05 0
0:05 0:05 0

2
664

3
775

From this known DTM, we can sum the rows and
columns to obtain D and T; DTP index contains the
index of the non-zero cells of DTM (array index is
from 0 to 2):

D ¼ ½0:17; 0:63; 0:1; 0:1�

T ¼ ½0:1; 0:8; 0:1�

DTPindex ¼

ð1; 2Þ
ð1; 2Þ
ð0; 1Þ
ð0; 1Þ

2
664

3
775

Next, we use our algorithm to initialize the
DTMX0 with the uniform distribution for the non-
zero cells indicated by DTP index for each depth bin:

DTMX0 ¼

0 0:085 0:085
0 0:315 0:315

0:05 0:05 0
0:05 0:05 0

2
664

3
775

Now we use the iteration loop of our algorithm to
estimate the DTM with DTMX:

Iteration 1

DTMX1 ¼

0 0:136 0:021
0 0:504 0:079

0:05 0:08 0
0:05 0:08 0

2
664

3
775

Iteration 2

DTMX2 ¼

0 0:144 0:021
0 0:535 0:079

0:05 0:06 0
0:05 0:06 0

2
664

3
775

Iteration 5

DTMX5 ¼

0 0:148 0:021
0 0:550 0:079

0:05 0:051 0
0:05 0:051 0

2
664

3
775

Iteration 6

DTMX6 ¼

0 0:149 0:021
0 0:551 0:079

0:05 0:050 0
0:05 0:050 0

2
664

3
775

Although the computer algorithm stopped after 16
iterations, after six iterations the DTMX values only
changed at the fourth decimal place. We can see a
small difference by comparing DTM with DTMX6:

Dif ¼ DTMX6–DTM ¼

0 �0:001 0:001
0 0:001 �0:001
0 0:0 0
0 0:0 0

2
664

3
775

This difference exists because there is no unique
solution to the above algebra. DTMX6 is just one of
the many solutions to this problem; however, it closely
estimated the original DTM.
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