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A B S T R A C T

Spatiotemporal variability in fishing patterns and species distributions from ocean climatology confound ana-
lysis of pelagic longline CPUE. A generalized computer program, LLSIM, was developed to simulate such data to
test methods used to quantify abundance trends. The method employs a Monte-Carlo algorithm with a prob-
ability of capture computed for each hook on each set based on overlaps of the species- and hook-depth dis-
tributions. The method was tested using characteristics of the longline gears and fishing locations of the US
pelagic longline fleet and blue marlin latitude-longitude-depth distributions predicted using a species distribu-
tion model fitted to 1986–2012 monthly oceanographic data. Catch data were simulated for two hypothetical
trends in total abundance. The simulator was capable of performing complex but controlled simulation ex-
periments. Analyses demonstrated the advantage of comparing estimates from alternative standardizations to
known true values that are not possible with real data.

1. Introduction

There is no clear, superior, objective method for quantifying
abundance from longline catch rates, and no accepted best practice.
Methodologies to perform accurate analyses using longline data have
proven difficult to confirm because the true abundance of the fishery
stocks are uncertain (Maunder and Punt, 2004; Maunder et al., 2006).
The issue is all the more important because stock assessments of most
highly migratory species, including nearly all billfishes worldwide, rely
on longline data to quantify stock abundance. Catch rates and catch per
unit effort (CPUE) indices are a fundamental requirement of stock as-
sessments, and the standardized indices can be subject to bias in-
troduced by the particular analyst as well as by the data (Maunder
et al., 2006). One reason for the lack of best practices for the standar-
dization methodology is that controlled experimentation is impossible.
The problem is also growing in complexity because climatic changes are
shifting the distributions of species habitats, which can violate statio-
narity assumptions of common statistical methods (Perry et al., 2005;
Caputi et al., 2009). Establishing best scientific methods requires
comparing how well alternatives can estimate truth, which is never
known in fisheries.

There is no real-world solution to this dilemma. Data simulation is a
workable approach but requires the simulations to be based sufficiently

in reality that they capture the important features of real-world varia-
bility. Previous studies have utilized simulations to examine differences
in standardization approaches (e.g., Carruthers et al., 2011, 2010;
Thorson et al., 2016). The longline simulator used in this study differs
from these previous studies as it couples independent assessments of
spatiotemporal variability in fishing patterns and ocean-climate driven
variations in species distribution, allowing for proactive inspection of
analytical problems. These previous efforts focused on either in-
corporating habitat variability into the standardization process (Hinton
and Nakano, 1996; Bigelow et al., 2002; Campbell, 2016) or simulating
spatiotemporal dynamics (Carruthers et al., 2011).

This research attempts to overcome the dilemma of measuring truth
in fish abundance using standardization methods by employing a si-
mulated fish population and a simulated fishery based on a realistic
fishing effort pattern. The longline simulator project has three major
components; the first involves distributing the fish within the simulated
space based on habitat characteristics (the species distribution model)
(Goodyear, 2016); the second involves the creation of simulated long-
line catch and effort data (LLSIM); and the third uses those data to
quantify the ability of a method to recreate the true underlying popu-
lation abundance trend. The project originated as an international effort
coordinated by the ICCAT Working Group on Stock Assessment
Methods (Anon., 2016).
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The focus this paper is on the second component, the computer
model LLSIM, which simulates longline catch-effort data that can be
used as a set of knowns for experiments to test alternative methods to
analyze such data (Goodyear, 2006a, b). LLSIM requires information
about the distributions of species in time and three-dimensional space.
This information was obtained through the species distribution model
(SDM) for Atlantic blue marlin (Makaira nigricans) as discussed in
Goodyear (2016). The SDM uses thermal utilization patterns from pop-
up satellite tag (PSAT) tagging, published oxygen requirements, and the
time-varying distribution of these variables (Goodyear, 2016). The blue
marlin distributions obtained from the SDM were paired with realistic
longline fishing effort based on the US pelagic longline fishery. The
longline simulator was run using a user-defined population of blue
marlin, and the resulting longline catch datasets were used to examine
the accuracy of CPUE standardizations.

2. Methods

The longline simulator is coupled with a simulated distribution of
blue marlin that utilizes a habitat suitability model (HSM) (Goodyear,
2016). The species distribution model (SDM) describes the size and
extent of the blue marlin habitat by 1° latitude and 1° longitude cells
encompassing 46 depth bins. The distribution of blue marlin is reported
by month and year in horizontal and vertical components. The dis-
tribution is obtained by inputting habitat preference of blue marlin for
temperature and depth acquired from PSATs. The construction and
validation of the HSM is reported extensively in Goodyear (2016). The
resulting SDM used in this study differs only in the source of the en-
vironmental data. Data in the original blue marlin SDM varied monthly
for an average year, and were obtained from the World Oceans Atlas.
The environmental data in this study’s SDM varied by month each year
from 1986 to 2012, and were obtained from the Community Earth
Systems Model (CESM1), which is a global ocean-sea-ice coupled model
linked to a biogeochemistry model (Biogeochemical Elemental Cycle)
(Lee et al., 2011; Danabasoglu et al., 2012; Long et al., 2013).

The species distribution data required for the longline simulations
are defined in two steps. The first defines the average population
number alive during the year and month by species (and sex-age
grouping if considered). The second step defines the relative densities of
the population by latitude, longitude, year, month and depth (these
densities are computed so that the sum of the products of the relative
density x volume for each latitude, longitude, and depth=1.0). The
products of the two vectors give the actual densities relative to each
hook for the simulation.

Blue marlin annual abundance is manually entered into the longline
simulator by providing a population file containing numbers of blue
marlin per year. This study used both a constant population, set at
500,000 individual blue marlin over 29 years and a declining popula-
tion, with a 70% reduction over 29 years. Two longline catch datasets,
one for each population, were produced by the longline simulator from
the methods described below.

2.1. Environmental data

Application of the HSM approach to predict the spatial distribution
of a species requires quantitative data about the physical environmental
variables that are important determinants of its habitat. Temperature
and dissolved oxygen concentrations are major factors shaping the
pelagic marine environment for blue marlin (Carlisle et al., 2017).
Temperature is perhaps the major feature of the pelagic ocean, and is
the environmental variable most frequently employed in habitat
models. Dissolved oxygen is an important variable to include because at
low levels it becomes a critical factor limiting habitat suitability (Prince
and Goodyear, 2006). Environmental data were obtained from the
CESM1. The model covers the global ocean with a latitudinal and
longitudinal resolution of 1.0° and 60 vertical layers with the bottom

level at 5500m. The vertical depth data bins were matched with the
depth data bins in the species distribution model. LLSIM specifies 46
depth bins and the CESM data were truncated at 1969m to accom-
modate the depth bins utilized by LLSIM. Depths from 5m to 150m are
in 10m bins, bins beyond 150m in depth become increasingly coarse.
The maximum depth for each one-degree latitude and longitude cell is
dependent on the bathymetry of the ocean, this information is included
in the structure of LLSIM.

2.2. US pelagic longline fleet

The effort data used in LLSIM were derived from the US pelagic
longline fishery logbooks obtained from the Southeast Fishery Science
Center. While the US commercial fishery has been operating since the
1960s, logbook data are only available from 1986. The logbook data
contains set-by-set information with the location and timing of the set
as well the gear configurations, the target species and the total catch in
number of each species. LLSIM partitions the fishing activity into a
specification of what is being fished (gear configurations) and where
and when each set is deployed (effort), information that is typically
included in the reported logbook data.

2.2.1. Gear configurations
The US pelagic longline fleet has historically targeted swordfish,

yellowfin tuna and bigeye tuna, with species targeting accomplished
through different gear configurations for each target species. These
configurations can be partitioned by hook type, numbers of light sticks
deployed, bait type and the numbers of hooks between floats (Table 1).
Each of the gear variables has four levels, resulting in 256 possible gear
configurations. LLSIM has the capacity for 1000 gear configurations,
either within one fleet or across several fleets. The available gear
combinations that were actually observed in the logbooks yielded 128
discrete gear configurations over the 29-year period. These gear con-
figurations were not constant over the entire time span, differences in
targeting and changing regulations dictated which gear was available
for each month and year. Each defined gear is represented in a separate
input file and is only used by LLSIM if specified by the effort input file.
The gear file consists of the essential gear coefficient (k) further dis-
cussed in Section 2.3.2, the number of hooks between floats (HBF), the
fraction of time the set fishes in daylight, and at each hook position, the
average fraction of time the hook spends in each of the 46 depth layers
(the depth probability matrix). The daylight fraction had values of 0,
0.25, 0.5, 0.75 or 1. These fractions were calculated from the beginning
soak time to the time at the end of haulback from entries in the logbook,
considering sunset and sunrise time for the average latitude of the set.
Each gear configuration fraction was calculated from the average
daylight fraction from all the sets using the specific configurations. An
additional descriptor in the gear file denotes the important features of
the gear that contribute to the value of the gear coefficient for that gear
type (i.e. hook type, light sticks, and bait type).

The initial depths used for the depth probability matrix in the gear
files were calculated from the gangion and floatline lengths reported in

Table 1
Variables included in gear definitions. Latitude and longitude in one °
cells, HBF=hooks between floats.

Variable Range/Values

Year 1986–2015
Month 1–12
Lat. −30 °S to 53 °N
Long. −95 °W to 15 °E
HBF (4 levels) 2–6
Hook (4 levels) Circle, J-hook, combo, unknown
Bait (4 levels) Live, dead, artificial, unknown
Lights (4 levels) 0, 1–500, 501–1500, unknown
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the logbooks. The total depth (gangion plus floatline lengths) for each
set within a gear were used to find the probability of a hook being at a
certain depth depending on its location between floats (hook location
1,2,3, etc). The average depth across all the sets reported in the logbook
for each gear (1–128) were used to populate the hook depth probability
matrix. The probabilities of each hook being in each depth layer were
found using a Gaussian probability density function using the mean (μ)
and standard deviation (σ) of depths for each gear configuration from
the logbook.

Shoaling and sagging are important features of actual fishing depth
for longline gear. The catenary approach was not used to account for
these effects due to a lack of detailed information in the logbooks,
specifically the “sagging rate”, necessary for the calculation (Yoshihara,
1954; Rice et al., 2007). To account for the different depths that hooks
occupy based on their position between floats and to account for bias in
the reported depths due to currents and drag within the water column,
hooks were skewed to a depth 40–60% shallower than the gear average
that was reported in the logbooks. Because of gear symmetry and since
the maximum HBF configuration in the US data was 6 HBF, the hooks
could occur in a maximum of three possible depth situations. These
include: 1 with 2 HBF, 2 with 3 and 4 HBF, and 3 with 5 and 6 HBF
(Fig.1). Where hooks had a single depth distribution (2 HBF), the mean
depth was set at 60% of the reported mean depth (mean depth from
logbook*0.60). For other configurations, the mean depths for the dee-
pest hooks were set to 60% of the mean reported depths. Means for the
intermediate hooks were set to 50% and means for the shallowest hooks
were set to 40% of the reported mean depths. For example, in a 5 HBF
gear, hooks 1 and 5 were set to 40%, hooks 2 and 4 were set to 50% and
hook 3 was set to 60% of the reported depth. This range is consistent
with observations of the differences between actual hook depths versus
those estimated based on the gear configuration (Bigelow et al., 2006;
Rice et al., 2007). The proportions in each depth layer were then esti-
mated from the adjusted mean for the hook positions using the normal
distribution and the standard deviation. This process resulted in a
probability distribution for each hook in each layer from the surface to
the deepest layer considered. The LLSIM framework is capable of in-
corporating spatiotemporal variability in shoaling patterns, but models
and data to drive that variability have yet to be developed. For now,
shoaling is assumed constant for a gear type and is embedded in the
depth probability matrix. However, spatiotemporal variability in
shoaling could be included in the simulations by using different gears
(with different shoaling) in time-space strata where the differences can
be quantified.

2.2.2. Distribution of fishing effort
Our intent was to provide a realistic logbook catch and effort data

set by modeling real fishing activity as closely as possible without
compromising data confidentially. Sets were removed when less than
three vessels fished in the same 1.0° latitude and longitude cell to
protect data sources. All set locations were randomly jittered by adding
or subtracting 1–5° of latitude and longitude. A large sample of longline

sets was creating from bootstrapping and 297,000 sets were randomly
selected, replicating the original amount of usable longline sets, with
similar spatiotemporal distributions. These were processed to produce
an effort file that defined the year, month, location and gear config-
uration (1–128) for each set used in the simulation. This approach
provided a shareable file of fishing effort for a hypothetical fleet with
real-world relevance to the analysis of patterns of fishing for the US
longline fishermen.

2.3. Simulations

2.3.1. General protocol
The longline simulator proceeds, hook by hook, for each hook and

layer depth for each longline set included in the simulation. The loca-
tion of each included set and the identity of the corresponding gear
configuration are read from a file describing the effort of the US long-
line fleet. Each gear configuration is defined in a separate gear file, and
is assumed to consist of an arbitrary number of “baskets” of longline
segments. Each basket is considered to be identical. The gear file con-
tains the overall average essential catchability by species (ks,g), the
fractions of time fished during hours of darkness and daylight, and the
fractions of time spent in each depth layer for each hook position (Fg,h,l),
the hook depth probability matrix. As the datasets used here only
contained one species, blue marlin, the s subscript is equal to 1, how-
ever, it is possible to include up to 20 species in the simulations. The
number of baskets fished during the set is read from the effort file. Each
basket of gear is assigned to be fished either in daylight or darkness
based upon the fractions of time fished by the gear in those hours. A
probability is calculated for catch on the hook at each species and depth
based on the essential gear catchabilities, hook fractions, and species
densities (Ds,lat,lon,l,t) at the location (latitude, longitude and depth
layer) and time fished. These are summed over all depths fished to give
a total probability for the hook as:

∑ ∑=
= =

p k F D
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l
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s g g h l s lat lon l t
1 1
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The effect of soak time is not explicitly modeled but is subsumed
into catchability. The computed value of the probability p is then en-
tered into a Monte Carlo procedure to generate a random number to
determine if the hook actually catches a fish. If so, the partial prob-
abilities are used to select the species (if more than one species being
simulated), and to track capture depths for studying model perfor-
mance. The program continues with the next hook in the basket, then
the next basket until all of the hooks on the set have been evaluated
(Fig. 2) and the simulated catch dataset is output for analysis.

Catch on a hook (Ch) is evaluated as a probabilistic event such that:

≅ kDNCh (2)

Where N is the population size, and D is the average relative density of
the species in the cells around the hooks. Ch has a distribution
equivalent to the distribution of D with a mean proportional to kN. The

Fig. 1. Schematic of construction of hook depth probability matrix.
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value of D is defined by the hook depth and species distributions and is
not amenable to change. Likewise, N is defined by the user, in this case,
as the constant or declining population values for the time when the
simulated set was deployed. Therefore, the gear coefficient k is the free
parameter which contains the scalar that controls the average catch
rate.

2.3.2. Scaling the catch
LLSIM is intended to simulate sampling of population abundance

not fishing mortality. Consequently, the approach employs sampling
with replacement in which catches are not removed from the popula-
tion. One requirement of the simulations is that there should be rea-
sonable agreement in the scale of the catch numbers between simulated
and actual data so that simulated data will be relevant to real-world
problems. There is a protocol to perform this estimation using average
CPUE from a fishery. To obtain initial values of k, a Poisson GLM was
run using the total fish caught in numbers as a function of hooks be-
tween floats, hook type, bait type, and number of lightsticks deployed.
This results in a gear specific kg given the gear configuration. From
there, an automated process was employed through a program (RevK).
RevK is a separate program intended as a tool to automate the process
of adjusting the scalar for model-to-real population units by setting the
value of the model’s gear essential catchability, k, to obtain CPUE

simulations of the correct magnitude. The RevK program reads the
average CPUE for each gear (and species, if more than one) from output
files resulting from a previous run of LLSIM. It also reads the desired
magnitude of the CPUE mean for each gear and species from a file
containing the true CPUE for each gear configuration. New values of k
are calculated based on the ratios of the simulated desired CPUEs.
LLSIM is then run again with the updated gear files with the new k
values. This is an iterative process until the correct magnitude of CPUE
is achieved. When the kg are estimated using this approach the differ-
ences among gears are estimated from the observational data rather
than imposed as variables in the simulation. Because of this convention,
the values of kg reflect the effects of light sticks, bait type and hook type
in the CPUE observations for those gears in the fishery itself and were
not imposed as a part of the simulation. Detailed information on the
program, and specific data input file requirements are discussed in
depth in the Longline Simulator User’s Manual (Goodyear, 2018).

2.4. CPUE standardizations

Two GLM CPUE standardization models were applied to the con-
stant catch population dataset produced by LLSIM. One model con-
tained all the available variables output by LLSIM and the other con-
tained only those variables specific to the time and area of the sets.

Fig. 2. Flow chart for longline simulator computations (Source: LLSIM User’s Manual).
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These models were developed using the delta lognormal framework and
were run in R with the packages lsmeans and glmmADMB (Lenth, 2016;
Fournier et al., 2012). The final model structures for both models are
listed in Table 2. The fits of the resulting standardized trends were
compared to the known, true population trend using the root mean
square error to contrast the reliability of alternative CPUE standardi-
zation methods.

3. Results and discussion

This study sought to evaluate the feasibility of employing LLSIM to
investigate methods for standardizing longline CPUE. An SDM suitable
for the purpose was already available for blue marlin (Goodyear, 2016).
Corresponding effort data for the US longline fishery adapted here for
use in the LLSIM highlight issues about common assumptions used to
estimate abundance. The number of hooks between floats is often used
to stratify longline data for standardizations using a GLM. Fishing depth
is important because of species behavior, but it is also usually unknown
or poorly estimated. Historically, higher HBF were believed to be as-
sociated with fishing deeper because of increased sagging, and it was
used as a proxy for fishing depth (Bigelow et al., 2006). The hook
depths used in this study were derived from logbook information that
reflected species targeting and the gear profiles did not strongly support
this assumption. The average amount of time fished by hooks can be
estimated for each depth layer for each hook and gear during a simu-
lation. The results for selected gears during the simulations here illus-
trate the implications of this assumption (Fig. 3). Some gears with 2
HBF fished deeper than other gears with 4 or 6 HBF. Blue marlin are
strongly surface oriented, and catch rates on individual gears are
highest for the shallowest hook position for gears in the actual fishery
(Goodyear et al., 2008; Yokawa and Uozumi, 2001) and in the simu-
lations. Both observations support pooling data by HBF. Additionally,
HBF is usually a significant factor in the GLMs, including here. How-
ever, the simulation details reveal that this result can be a spurious
consequence of the dominance of a few gears in pooled strata which are
actually undermined by other substrata. LLSIM provides the means to
test for alternative, potentially more powerful, stratification schemes
for actual situations, as well as more academic explorations of the
general problem.

The trends in nominal CPUE indices for the two simulated datasets
were superficially similar to the nominal CPUE index obtained from the
actual US longline logbooks (Fig. 4). The declining nominal trend for
the constant population can only have been caused by spatiotemporal
patterns in the distribution of fishing effort, including depths fished,
that are embedded in the simulations. These are instances of the fea-
tures hypothesized by Walters (2003) and Bigelow and Maunder (2007)
to have undermined Myers and Worm’s (2003) conclusions about a
rapid worldwide depletion of predatory fish communities and helped to
focus attention on issues related to standardization (Hampton et al.,
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Fig. 3. Realized fishing depths during the simulation of several gear config-
urations selected to demonstrate the variability of hook depth.
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2005). Although the three trends in Fig. 4 are superficially similar,
closer inspection reveals that the nominal CPUE for the declining po-
pulation exhibited the largest dynamic range and ended lower. Also,
while the decline for the constant population was relatively constant,
the values for the actual fishery declined from about 1994 to 2002 and
then were about constant thereafter. This difference suggests the actual
trends in CPUE in the fishery is unlikely to be explained simply by the
temporal patterns of fishing areas and gears used.

The GLM standardizations of the simulated data demonstrated the
utility of studying alternative standardized models using simulated data
(Fig. 5). The application of the full and simple GLM’s exhibited very
different outcomes. The results from the simple GLM model showed a
monotonic decline in the population, overestimating the true popula-
tion in the earliest years and underestimating it in the most recent
years. In contrast, the full GLM model was able to account for the gear-
area effects and eliminate the spurious trend that existed in the nominal
and simple GLM results. Uncorrected error remained that may have
included residue from inappropriate pooling of HBF. However, the
addition of gear specific variables to the simple model, which only
contained spatiotemporal information on sets, vastly improved the fit to
the true population trend (RMSE improved from 0.44 to 0.08). The
inclusion of gear variables is not novel in standardization approaches,
but the use of simulated data allows for results to be compared with
true values which are never known for “real-world” data.

4. Conclusions

LLSIM is a tool for creating longline datasets for experiments that
simulate field data as a precursor for applying a statistical or other
method of analysis. The approach outlined here decouples the processes
of modeling the population distribution from those associated with the
fishery in a way that allows for complex but controlled simulation ex-
periments to be performed. The simulated data are catch by species and
gear for each set and at a spatiotemporal resolution of 1° and month and
year. This detail allows complex interactions to be included in statistical
or other analyses.

LLSIM approaches the CPUE evaluation as a sampling problem and
does not internally evaluate mortality or changes in abundance within
season or space. Depending on circumstance, such features can be ac-
commodated by coupling LLSIM with an age-structured population si-
mulation. If different age or sex partitions of the population exhibit
different spatiotemporal behaviors, they can be accommodated si-
multaneously as different species cohorts. These cohorts can exhibit
their own spatial distributions and temporal abundances consistent
with the population simulations. The monthly temporal time step al-
lows within-season abundance to be evaluated monthly. This approach
can provide age-sex structured data for analysis. However, depending
on the thrust of particular investigations other approaches may be less
cumbersome or otherwise more appropriate.

This document describes the basic method for developing datasets
from real-world longline fisheries to be used in the simulator and de-
monstrates their utility. These datasets were applied in another study to
identify best practices for longline catch and effort standardizations
(Forrestal et al., 2019). Alternatively, simulated datasets can be de-
signed to investigate the robustness of methods applied in connection
with specific stock assessments as in Goodyear et al. (2018a,b), or a
host of other specific issues. As with real data, findings from simulations
are always only as robust as permitted by the design of the experiments.
Much can be learned because the nature of the errors is different, and
experiments can be shaped to study many different situations.
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