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SUMMARY 

Species distribution models (SDM) integrate multiple habitat features to predict spatiotemporal 

patterns of population relative abundance. When appropriately scaled, the predictions constitute 

a continuous numerical variable suitable for inclusion as a covariate in analyses intended to 

standardize longline CPUE. Here we evaluate methods to incorporate such data into CPUE 

standardizations using simulated longline catches of blue marlin (Makaira nigricans) patterned 

after either US or Japanese fishing. Habitat relative densities (H) were obtained from a SDM, 

and a habitat coefficient for each set was estimated from H using hook depths of individual gears. 

Standardizations used GLMs fitted to suites of covariates including either a continuous synthetic 

habitat variable or traditional spatial and temporal factors (area, month) to represent habitat. 

Overall, SDM-derived numerical variables were superior to traditional habitat factors. 

However, the results for the US-based data were mixed, presumably because of better statistical 

balance in the habitat factors. The results also show that temperature should be useful as a 

continuous numeric covariate for standardizing blue marlin CPUE. 

 

RÉSUMÉ 

 

Les modèles de distribution des espèces (SDM) intègrent de multiples caractéristiques de 

l'habitat pour prédire les schémas spatiotemporels de l'abondance relative de la population. 

Lorsqu'elles sont mises à l'échelle de manière appropriée, les prédictions constituent une 

variable numérique continue pouvant être incluse comme covariable dans les analyses visant à 

standardiser la CPUE palangrière. Nous évaluons ici des méthodes pour incorporer de telles 

données dans des standardisations de la CPUE en utilisant des captures palangrières simulées 

de makaire bleu (Makaira nigricans) calquées sur la pêche américaine ou japonaise. Les densités 

relatives de l'habitat (H) ont été obtenues à partir d'un SDM, et un coefficient d'habitat pour 

chaque jeu a été estimé à partir de H en utilisant la profondeur des hameçons de chaque engin. 

Les standardisations utilisaient des GLM ajustés à des suites de covariables incluant soit une 

variable d'habitat synthétique continue, soit des facteurs spatiaux et temporels traditionnels 

(zone, mois) pour représenter l'habitat. Dans l'ensemble, les variables numériques dérivées de 

SDM étaient supérieures aux facteurs traditionnels de l'habitat. Cependant, les résultats des 

données basées sur les États-Unis étaient mitigés, vraisemblablement en raison d'un meilleur 

équilibre statistique des facteurs de l'habitat. Les résultats montrent également que la 

température devrait être utile en tant que covariable numérique continue pour standardiser les 

CPUE de makaire bleu. 

 

 

RESUMEN 

 

Los modelos de distribución de especies (SDM) integran múltiples características del hábitat 

para predecir patrones espaciotemporales de la abundancia relativa de la población. Cuando 

están adecuadamente escalados, las predicciones constituyen una variable numérica continua 

adecuada para ser incluida como covariable en análisis para estandarizar la CPUE del 

palangre. Aquí se evalúan métodos para incorporar dichos datos en las estandarizaciones de 

CPUE utilizando capturas de palangre simuladas de aguja azul (Makaira nigricans) para las 

que se ha establecido un patrón de acuerdo con la pesca japonesa o estadounidense. Se 

obtuvieron densidades relativas del hábitat (H) de un SDM, y se estimó un coeficiente del hábitat 
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para cada lance a partir de H utilizando profundidades de anzuelo de cada arte. Las 

estandarizaciones utilizaron GLM ajustados a conjuntos de covariables que incluían bien una 

variable de hábitat sintético continua o los tradicionales factores espaciales y temporales (área, 

mes) para representar el hábitat. En total, las variables numéricas derivadas de SDM eran 

superiores a los factores de hábitat tradicionales. Sin embargo, los resultados para datos 

basados en Estados Unidos eran mezclados, presumiblemente a causa de un mejor equilibrio 

estadístico en los factores de hábitat. Los resultados muestran también que la temperatura 

debería ser útil como covariable numérica continua para estandarizar la CPUE de la aguja azul. 
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1.  Introduction 

 

In 2015 the ICCAT Working Group on Stock Assessment Methods initiated an effort to study longline CPUE 

standardization methods using simulated data (Anon 2016). Goodyear et al. (2017) modeled catchability as a joint 

function of a habitat coefficient (w) and an essential gear effect (k). The method uses a species distribution model 

(SDM) to quantify habitat relative densities (H) where a longline is deployed. The SDM uses environmental 

variables and species habitat utilization patterns to estimate species relative abundance. The habitat coefficient is 

estimated from H using probability distributions for depths fished by the hooks. Both w and H could be used as 

covariates in analyses of catch rates to estimate abundance trends. Here we test the method using data simulations 

patterned after the US and Japanese longline fisheries in the Atlantic and compare the relative errors of GLM 

standardization results to those derived with alternative model covariates including traditional factors for area and 

intra-annual habitat variability. 

 

 

2.  Background 

 

Goodyear et al. (2017) separated the catchability of a single hook (𝑞ℎ) into two factors 1) a gear effect, k, and 2) 

a habitat effect, H, due variations in density caused by variations in features of the environment:  

 

𝑞ℎ = 𝑘�̅� ℎ ,                                    1 

 

where: 

𝑞ℎ  = the catchability coefficient for the hook, 

k  = gear coefficient, and 

H̅h = the average habitat around the hook.  

 

 

Since catch is an integer resulting from a series of probabilistic encounters, for a population N it is: 

 

𝐶ℎ ≅ 𝑘�̅� ℎ𝑁.                                 2  
 

The habitat coefficient, w, is the average of H̅h , for all hooks on a longline set: 

 

𝑤 = �̅�ℎ,    and                             3  

 

𝑞𝑠 = 𝑘𝑤.                                       4    
 

 

The habitat coefficient (w) is the part of the catchability of a longline set that varies in time and space. Given 

sufficient data the values of w can be estimated independent of catch. 
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The essential gear effect (k) is a constant that accounts for features affecting catch by the gear that do not include 

the availability of fish in the vicinity of a hook. Features of longlines that affect k include everything that does not 

affect the density of fish in the water surrounding the hooks. In contrast to w, it cannot be estimated independent 

of catch. 

 

 

3.  Method 

 

This study evaluates the performance of the habitat coefficient as a covariate in a GLM by comparing results of 

statistical modeling to “true” values known from simulation and with several alternative covariates. The process 

involves several steps: 

 

a) Simulate population trends to serve as the “true” trends for the purpose of the study. 

b) Estimate the relative distributions of blue marlin in time and space with a species distribution model. 

c) Assemble a time series of longline effort similar to real fisheries  

d) Simulate time series of longline catches. 

e) Construct the coefficients and create input files for the GLM’s. 

f) Process the GLM. 

g) Compare GLM results to known “true” values.  

 

3.1  Population time series  

 

To ensure the trends would be biologically reasonable, the populations used for the “true” values were computed 

from a fisheries simulation model (FSIM, Goodyear 2004). This approach preserves the option for including the 

standardizations in a larger evaluation of the whole assessment process. The model can compute size and age 

frequencies of the population and catch by sex. It also provides annual values of MSY and related statistics that 

account for tends in selectivities, etc. to document the relevant benchmarks to compare with assessment model 

results. Two alternatives population trajectories intended to encompass a range of reasonable possibilities were 

produced. They share all biological features except that BMSY for the larger population is 3.2 times greater than 

for the smaller population. The model assumed the fishery exhibited knife-edged, age-based selectivity with full 

recruitment to the fishery at age 1. Growth was sexually dimorphic with parameters used in previous analyses 

(e.g., Goodyear 2015). Natural mortality in the fishable population was constant at Z=0.1 for both sexes. 

Recruitment was governed by a Beverton-Holt stock-recruit function with steepness equal to 0.67 and without 

stochastic variability. Fishing mortality was set to reproduce the pattern apparent in the ICCAT Task I data from 

1956 to 2016 (Figure 1). One alternative assumed MSY was within the range of observed catches which resulted 

in a trajectory similar to the findings of past assessments.  The population for the other alternative was assumed 

to be much larger so that the historical catches are well below MSY.  These population trajectories provide contrast 

between alternative perspectives about the status of the stock (Figure 2).  

 

3.2   Species distribution model 

 

The SDM used in this study is a detailed model of the four-dimensional distribution of blue marlin (Goodyear 

2016). It assumes average species density is proportional to average habitat value. The values of H are normalized 

so that the sum of the products of H and the habitat layer volumes is always unity at any point in time. 

Oceanographic data and species habitat utilization patterns are used to distribute the population in time and three-

dimensional space. The current implementation partitions the Atlantic from 50 S to 55 N latitude at a spatial 

resolution of 1⁰ latitude and 1⁰ longitude with 46 increasingly deep layers from the surface to a maximum depth 

of 1970 m. Separate distributions were computed for hours of daylight and darkness to reflect the day-night 

redistribution of the species in the vertical plane. The model uses behavioral data from blue marlin PSAT tagging, 

published oxygen requirements, and the time-varying distribution of these variables in oceanographic data each 

month and year. The oceanographic data were monthly values from the Earth System Model from 1956 to 2012 

which matched the spatial resolution of the SDM and were provided by colleagues at the US National Atlantic 

Oceanographic and Meteorological Laboratory (AOML). At the time of this study 2012 was the last year that 

oceanographic data were available. The 2012 values were substituted as needed to provide oceanographic data 

through 2016. This convention accounts for the large month-to-month variability in oceanographic conditions but 

omits any effects from annual trends that may have been important in the last few years.  
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Two implementations of the SDM were employed in the analyses here. The baseline was the model for Atlantic 

blue marlin described in Goodyear (2016).  An alternative was used to explore the sensitivity of the CPUE 

standardizations to error in the SDM predictions. This model substituted a temperature preference profile in which 

the species prefers higher temperatures (Figure 3). This approach (the thermophilic SDM) adjusted the observed 

PSAT-tag data by the average volume of habitat within the observed temperature bins (Goodyear 2016). At the 

highest temperatures (>30C) the predicted relative densities are much elevated by the thermophilic model 

assumption. However, the volumes of ocean strata within the temperature extremes are relatively very small. As 

a consequence, the population fractions for the two models within cooler strata (below 30⁰ C) are not as different 

as might be inferred from Figure 3. Nonetheless, the predicted densities in ocean strata at the highest temperatures 

are much higher than for the baseline assumption.  

 

The SDM computes relative blue marlin average densities (H) at each of 46 ocean depth layers from the surface 

to nearly 2km depth during hours of darkness and daylight for each latitude, longitude, year and month. In addition 

to their contribution to the estimates of w, values of H are potentially useful covariates for CPUE standardizations. 

Here we compiled estimates of the day-night average in the surface layer (H0) and the day-night average from the 

surface to about 100m (H100). Other aggregations of depths and weightings by time of day would be possible to 

best capture fishing patterns and gear configurations.  

 

3.3 Fishery data 

 

In addition to the population time series and SDM data, the longline data simulations require inputs about where 

and when longlines are to be fished and the configuration of the longlines to be used.  We selected two “fisheries” 

to evaluate. The first was based on the US longline fishery because we had detailed information about the gears 

used and the spatiotemporal patterns of deployments. The second “fishery” was patterned after the Japanese 

longline effort as reported in the ICCAT Task ii data files. The Japanese data include the earliest years of the blue 

marlin fishery and constitute the longest time series for the Atlantic stock. 

 

3.3.1 US fishery 

 

Spatiotemporal aspects of the US longline fishery are restricted because of confidentiality agreements about the 

data collected.  We created a gear-effort matrix that described the fishery and used Monte Carlo methods to create 

a data set describing a synthetic fishery closely resembling US longline fishing practices. These data covered the 

period 1986-2015 with 128 discrete gear types that were first used in a blind study of the performance of 

standardization methods (Forrestal et al. 2017). These data were adopted unchanged for the current study. The 

resulting data file contained about 280 thousand simulated sets. 

 

3.3.2 Japanese fishery 

 

Information about the Japanese fishery was extracted from the online version of ICCAT Task ii database. These 

data provide the numbers hooks fished in 5° latitude-longitude squares for the period 1956-2016. This data was 

supplemented with information used in earlier simulations of the Japanese longlines that were developed in 

support of research for the ICCAT Methods Working Group (Goodyear 2006). This additional information included 

35 longline configurations deployed between 1956 and 1995 and the number of sets by gear type by year and month 

through 1995. A central feature of the data was a trend that increased the proportions of gears that fished deeper in the 

water column with time. However, the underlying detail changed markedly in the early 1970’s. The analysis reported 

in Goodyear (2006) showed a discontinuity in catchability computed with these data that seemed likely an artifact of 

the methods used in their construction. To avoid the complicating consequences of these features, our simulated 

Japanese fishery was constrained to 3 generic gear types: shallow (3 hbf), intermediate (10 hbf) and deep (24 hbf). These 

replaced the 35 gears in the original files based on the relative depth fished by each gear. For 1956-1995 the gear in the 

simulation was selected using the mean depth of the gears used in the 2006 study. For years prior to 1975 and after 

1995, the number of sets in the 5° cells were estimated from the total number of hooks in the Task ii records using 

the average number of hooks per set by the gear for years where it had been used. Gear type after 1995 was 

randomly assigned based on the proportions in the 1995 data. Each set in a 5° cell in the ICCAT data was randomly 

assigned to an included habitable 1° cell (no land).  

 

3.4 Longline simulations 

 

Longline catch data were simulated for the study using LLSIM V2 (Goodyear 2017). The model computes a 

probability of catch for each hook on each longline set. The probability is the cumulative sum of the products of 

a gear coefficient (k), the density of fish in each layer of the water column, and the duration of time the hook 

spends in that layer. To account for the day-night vertical movement of the fish some of the hooks are assumed to 
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fish during daylight hours and the remainder at night. The proportions are assigned for each set in an input file. 

The probability of catch is entered into a Monte-Carlo procedure to test for a catch on each hook. The sum of all 

outcomes determines the number of fish caught on a set. LLSIM saves data for each simulated set for subsequent 

analyses. There was no additional error added to account for other factors (species misidentification, reporting, 

etc.). The value of k is an input to LLSIM and read as a gear parameter. Variations in the values of k are defined 

extrinsically to identify important gear features that affect the gear components of catchability. Examples include 

such things as hook type, light sticks, fleet, etc. These variables are identified as important gear features in the 

LLSIM input file and are saved in the output record for each catch. Each output record for a simulation provides 

the month, year, latitude, longitude, identifies the gear and its features, and the number of fish caught on the set. 

Though not employed here, several species can be modeled simultaneously. Our design required a minimum of 6 

simulated longline datasets:  

 

1) US fishery, small population and baseline SDM;  

2) US fishery, large population and baseline SDM;  

3) US fishery, small population and thermophilic SDM;  

4) US fishery, large population and thermophilic SDM;  

5) Japanese fishery, small population and baseline SDM;  

6) Japanese fishery, large population and baseline SDM.   

 

This design is sufficient for gross comparisons but does not provide the replication needed to characterize 

precision of the alternatives. 

 

3.5  Data compilation 

  

A pre-processing step is required to prepare a catch-effort record from the simulated logbook for use in a 

standardization protocol (Figure 4).  The simulated longline CPUE data are set by set observations similar to what 

might be obtained from logbooks. Each record identifies the gear, month, year and location (latitude and longitude) 

of the set and the numbers of blue marlin caught. The probability distributions for the hooks are input from gear 

files. The species relative densities (H) at the location and time of the set are obtained from the SDM. The value 

of w is then computed from the two overlapping distributions. Because of the near-surface habitat and strong 

association of blue marlin with tropical conditions, temperature might be expected to be a surrogate for H. So we 

also compiled the surface layer temperatures (T0) and the average from the surface to about 100m (T100) as 

potential covariates. 

 

The simulations were done at 1° resolution of latitude and longitude. However, the standardizations may be done 

at the lower 5° resolution, as may be required for real data such as the Japanese example. This geometry is 

accommodated by accumulating the 1° observations at the 5° resolution. In this case the temperature and H fields 

are the averages of valid 1° cells within the 5° output grid and the values for w are computed from the 5° average 

values of H. The program that does this task can save the result set by set to match the input records. Alternatively, 

it can pool data for all sets by each gear in the 1° or 5° cell by month. The resulting data file for the simulated US 

fishery were set by set. The simulated sets for the Japanese fishery were pooled to 5° x 5° to match the resolution 

of the ICCAT data. 

 

3.6  Analyses 

 

Several GLM models were fitted to each dataset using suites of potential variables that were known to be 

influential because of their roles in the simulations. The GLM’s were run in R using the glmmADMB library (R 

Core Team, 2015). There was no attempt to select the variables for each fit based on any performance-based 

criteria or make judgments about the quality of the fits to the simulated data. The habitat coefficients (w), habitat 

relative densities (H), and temperature (C°) were included as numerical variables. Factors included year, month, 

the gear (a unique id), hooks between floats (hbf), hook type, bait type, and the use of light sticks on sets. For 

analyses of data patterned after the distribution of Japanese effort, the set by set data were first pooled to 5°X5° 

resolution. Set by set data were used for analyses of the simulations patterned after the US longline fishery. The 

standardized annual abundance predictions combined separate GLM’s for the successful sets and the catch rates 

of those that were successful.  

 

Since k is known for the gear used in the simulations, it is possible to estimate abundance for the simulated data 

using the annual means of the catch/(effort*k*w) without using GLM framework. This method was applied to 

each dataset to scan for anomalies and is included for reference, but it is not proffered as a reasonable option. The 

GLM models for the US-based simulations included: 
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1. year, w 

2. year, w, gear id 

3. year, lightstick, hooktype, baittype, hbf 

4. year, lightstick, hooktype, baittype, hbf, w 

5. year, lightstick, hooktype, baittype, hbf, H0  

6. year, lightstick, hooktype, baittype, hbf, H100  

7. year, lightstick, hooktype, baittype, hbf, T0  

8. year, lightstick, hooktype, baittype, hbf, T100  

9. year, month, area, lightstick, hooktype, baittype, hbf  

10. year, month, area, lightstick, hooktype, baittype, hbf, w 

 

Each model was applied to each combination and reciprocal for SDM distributions assumed to be true for the 

population and at the time of analysis (Table 1). 

 

The GLM models for the simulations using the distribution of Japanese longline sets included:  

 

1. year, w 

2. year, gear id, w 

3. year, hbf 

4. year, hbf, w 

5. year, hbf, H0  

6. year, H100  

7. year, hbf, T0  

8. year, hbf, T100  

9. year, month, area, hbf  

10. year, month, area, hbf, w 

 

The deterministic abundance estimations possible because k was known revealed the method was sensitive to 

occasional catches in marginal habitat (Figure 5), and we chose to trim about 8% of the total Japanese effort that 

occurred north of 50°N or south of 50°S from further analysis. The resulting simulated CPUE data file had about 

1.3 million simulated sets between 50°S and 50°N latitude. No similar adjustment was made for the simulated US 

data.  

 

The annual relative abundances for each standardization method were compared to the true values known from 

the simulations. Each series was first normalized by dividing by the series mean. Error was quantified as the 

difference between the predicted and true values. The sums of squares of these differences was used to compare 

the relative accuracy of each standardization methods and to establish ranks among the alternatives evaluated. 

Note that this use of the sum of squares is different than the standard sum of squares because the difference being 

squared is measured from the true value rather than a derived statistic. Also note the CI intervals for the indices 

in the plots of the standardization results in this report are based on the usual fitted statistics (without knowledge 

of the true values).  

 

 

4.  Results 

 

The results of each of fitting exercises for each of the simulations based on the US longline fleet are presented in 

Figures 6-13. The relative error for each simulation and each standardization method are given in Table 2, along 

with the rank of the average for each method. The ranks of the methods for each combination of simulation 

assumption and species distribution model used to compute w and H are in Table 3. Except when the habitat 

coefficient was used alone, the standardizations diminished error when compared to the nominal CPUE. 

Inspections of the plots in Figures 6-13 showed that the standardization tended to correct for the downward slope 

in the nominal time series that exaggerated the trend in the population. The decline in abundance was much larger 

for the small population alternative. The pattern in the nominal CPUE was an aggregate effect of the transition of 

fishing effort to less favorable habitat as time passed, partly by increasing use of gears that fish deeper in the water 

column.  

 

Standardizations using the deterministic calculation based on kw and that also used the correct SDM to estimate 

w were both accurate and precise (Panel A of Figures 6-9 and 14-15). Results with that approach were degraded 

when the choice of SDM for use in the standardization was in error (Figures 10-13, Panel A). Standardizations 

that relied on the habitat coefficient alone did not improve upon the nominal for any situation evaluated here 
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(Figures 6-15, Panel C), but would be expected to mirror the results of standardizations using kw if k was constant 

(e.g., 1 gear). Standardizations that used only gear features also performed poorly with respect to most other 

alternatives (Tables 2-3, Figures 6-15).  

 

The best standardizations accompanied habitat coefficients paired with factors that identified the particular gears 

or also included factors for area and month with w (Tables 2-3; Figures 6-15, Panel B and K; and Figures 14-

15, Panel E). This might be a result of partitioning the data in such a manner that the GLM is able to precisely 

isolate the effects of the different gears. The increased accuracy seems to come at a cost of the estimated precision 

of the index. For the US-based data, including the gear id added 131 factors and increased the CI beyond the scale 

of the plots (Figures 6-13, Panel B). Other standardizations also show that the CV of the estimates is not 

informative about accuracy of the index (e.g., Figures 6-15, Panel C).  

 

 

For the US-based datasets, the reduction in the SS averaged about 81% when w and gear id were covariates and 

also when w and the gear and habitat factors were used (Table 2). Standardizations that applied other covariates 

which included continuous variables (H or T) with the habitat factors (Figures 6-13, Panels E-I) reduced the total 

SS by an average of between about 70 to 76%. The traditional approach using only factors to represent habitat 

variability decreased the SS by 72% (Figures 6-13, Panel J; Table 3). The individual results within that matrix 

did not point to a clearly superior method (Tables 2 and 3). On average, the analyses using SDM-based covariates 

resulted in larger errors (SS = 1.13 vs 1.46, p=0.03, 27 df) when they were incorrectly paired with the distribution 

of the population. However, the differences were smaller than the range of errors from standardizations that used 

traditional month-area factors.   

 

In contrast, the standardizations of simulation data based on the distribution of Japanese effort were substantially 

improved by the inclusion of SDM-based covariates (Figures 14-15, Table 4). Each method that included gear 

information as well as w reduced SS by 97-98% compared to an average of 51% (11-61%) where intra-annual 

variability was modeled with factors for month and area (Table 4). Analyses that included H or temperature as 

covariates were able to reduce the SS by an average of 89-98% (Table 4.) Inspections of the trends in Figures 14 

and 15 suggest that the SDM-supported standardizations captured the true trend of the population much better 

than the factor-based analyses, particularly when the population had declined substantially during the period.  

 

 

5.  Discussion 

 

Compared to models that use factors for area and month, the accuracy of CPUE standardizations for the Japanese-

based simulated longline catch data were substantially improved by SDM-derived covariates (Table 4). The most 

accurate results were obtained when the gear was identified by gear id (or hbf which was unique for each the gear 

type for our simulated Japanese data). Temperature was a good surrogate for habitat relative density. The average 

value in the first 100m of depth for both variables outperformed the values at the surface. The relative accuracy 

of standardizations of the catch data from the US-based simulations were similar, but the differences arising from 

the use of SDM-derived data or temperature were less profound. We also noted that the results were more accurate 

when the SDM used to create the variable (H or w) matched the population used to simulate the catch. However, 

the differences were not great.  

 

Our results suggest that temperature is a useful covariate for standardizing CPUE when included as a continuous 

numeric variable. When temperature was used as a surrogate for H, it was predictive for both the US- and 

Japanese-based datasets. This is noteworthy because H is not a linear function of temperature but sharply increases 

in the range of preferred temperatures. That suggests the GLMs were capable of taking advantage of whatever 

empirical associations existed in the data, even when the function may depart considerably from truth. The habitat 

densities (H) predicted by the baseline and thermophilic models used here are different but similarly correlated, 

more so for most of the range of temperatures that constitute large ocean volumes.  That feature would also be 

true of other SDM parameterizations that preserve the blue marlin habitat patterns observed elsewhere (e.g., 

Goodyear 2003, Prince and Goodyear 2006, 2007, Goodyear et al. 2008, Prince et.al 2010). Consequently, it 

seems likely that an SDM that satisfies reasonably established qualitative and quantitative criteria will provide 

estimates of H that will outperform habitat factors depending on circumstances about factor balance. Additional 

evaluations of simulated data could clarify this question.   
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The catch on any set is proportional to kwN, and so the value of N can be estimated from average C/kw. For a 

single gear k is constant, and w is estimable from features of the gear and species distribution. If k is known, and 

w is correct, the estimator is accurate. But for small sample sizes, the estimates can be very imprecise. Catches 

are integer values and w is a very small real number This causes individual estimates of abundances to be either 

zero or very high whenever a fish is actually caught. Precision requires a large sample size whenever marginal 

habitat is included. This situation is particularly problematic if the data are pooled such that catch/hook in some 

cells are estimated with very few sets. This was the problem that led to the mid-1970s variability in estimated 

abundances in Figure 5. The same phenomenon was postulated as a reason why the standardizations explored in 

a former study were less than satisfactory (Goodyear and Bigelow 2012). It is unclear how this noise would 

propagate into a typical standardization problem, but this approach could provide a means to identify outlying 

strata. 

 

The results here provide examples of why goodness of fit criteria are not always reliable indicators of the accuracy 

of the results. Accurate results for the US simulations were obtained for a highly overparameterized model that 

included a factor for each gear, but the confidence in the estimates was very low (e.g., Figures 6-13, Panel C). In 

contrast, for other models a relatively narrow CV estimated for the index was misleading (e.g., Figures 6-15, 

Panel C). This feature exemplifies a pervasive problem: even though R2 reflects confidence in the fitted parameter 

values, it is not necessarily a reliable indicator of model accuracy. Parameters are selected for inclusion based on 

these criteria, and the resulting time series are sometimes weighted by the residuals. In practice, it is probably 

impossible to ignore the CI when choosing amongst standardization alternatives in a stock assessment atmosphere. 

This issue is amenable to investigation through the analysis of simulated data where the results can be contrasted 

with true values. 

 

We did not attempt to refine each model to include the best set of parameters for each realized dataset within our 

dataset-method strata.   Consequently, better fits could have been obtained that may have affect our results. Also, 

we did not address possible issues with the appropriateness of variables that reflect some of the same information 

(e.g. factors area and month together with a SDM-derived variable). Additional simulations could provide more 

material for study, but the simulations already available can be used to investigate many questions not evaluated 

here. Examples include different methods for formulating GLMs with the same basic data, or different 

standardization paradigms altogether.  We did not examine different methods for pooling data at 5°x5° vs. 1°x1° 

that might be important for understanding the strengths and liabilities of the ICCAT task-ii data. The computer 

programs that implement the models used in this study are designed to accommodate multiple situations and can 

be readily adapted by only changing input data files. These can involve additional simulation studies or 

applications of the SDM-derived variables to standardize abundance indices from actual fisheries. Based on our 

results it might be profitable to apply these methods to the Japanese longline data if sufficient information is 

available about the gears used. This has done in for the US longline logbooks (Goodyear et al. 2018).  
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Table 1. Acronyms used to identify simulation-treatment combinations for analyses of simulated longline data 

based on patterns of fishing effort by the US fishery. 

 

 

  Species distribution assumption  
Acronym Population Analysis Population size 

BBL Baseline Baseline Large 

BBS Baseline Baseline Small 

TTL Thermophilic Thermophilic Large 

TTS Thermophilic Thermophilic Small 

BTL Baseline Thermophilic Large 

BTS Baseline Thermophilic Small 

TBL Thermophilic Baseline Large 

TBS Thermophilic Baseline Small 

 

 

 

Table 2. Errors in indices of abundance from standardizations of simulated US longline CPUE with alternative 

treatments of habitat data in GLMs. The errors were the sums of squares of the differences between annual and 

true abundance, both normalized to the series mean. The column labeled nominal was the average “observed” 

CPUE. The other columns can be identified as follows: w includes values standardized with the habitat coefficient;  

Gid includes a factor identifying the unique gear; Gf includes gear factors lightstick, hooktype, baittype and hbf ; 

H0 includes a SDM-derived numeric covariate for average surface day-night habitat density; H100 includes a SDM-

derived numeric covariate for day-night average habitat density from the surface to 100m; T0 includes a numeric 

variable for the surface temperature (°C); T100 includes a numeric variable for the average temperature from the 

surface to 100m; and Hf includes factors for month and ICCAT billfish area. The data sources correspond to the 

acronyms in Table 1. 

 

 

  Covariate method 

Data Nominal w+Gid w Gf w+Gf Gf+H0 Gf+H100 Gf+T0 Gf+T100 Gf+Hf w+Gf+Hf 

BBL 6.044 0.276 4.993 1.281 1.719 1.769 2.066 0.932 1.133 0.310 0.875 

BBS 5.207 0.470 7.255 1.427 0.601 0.949 0.920 0.515 0.443 0.340 0.175 

TTL 5.433 0.720 8.466 2.436 1.452 1.139 1.404 1.502 1.717 2.057 0.617 

TTS 3.052 1.102 9.652 1.916 1.062 1.233 1.226 1.804 1.960 2.794 2.366 

BTL 6.044 0.403 6.402 1.281 1.741 1.516 1.629 0.932 1.133 0.310 0.427 

BTS 5.207 1.356 6.006 1.427 1.511 1.420 1.445 0.515 0.443 0.340 0.279 

TBL 5.433 1.547 4.701 2.436 1.379 1.112 1.489 1.502 1.717 2.057 0.870 

TBS 3.052 1.465 6.232 1.916 1.899 1.864 1.613 1.804 1.960 2.794 1.621 

Mean 4.934 0.917 6.713 1.765 1.420 1.375 1.474 1.188 1.313 1.375 0.904 

 Rank 2 10 9 7 5 8 3 4 5 1 

   



926 

Table 3. Ranks of errors in indices of abundance from standardizations of simulated US longline CPUE with 

alternative treatments of habitat data in GLMs in Table 2. Lower values indicate better correspondence between 

true and estimated abundances. The column labeled nominal was the average “observed” CPUE. The other 

columns can be identified as follows: w includes values standardized with the habitat coefficient;  Gid includes a 

factor identifying the unique gear; Gf includes gear factors lightstick, hooktype, baittype and hbf ; H0 includes a 

SDM-derived numeric covariate for average surface day-night habitat density; H100 includes a SDM-derived 

numeric covariate for day-night average habitat density from the surface to 100m; T0 includes a numeric variable 

for the surface temperature (°C); and T100 includes a numeric variable for the average temperature from the surface 

to 100m. The data sources correspond to the acronyms in Table 1. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Errors in indices of abundance from standardizations of longline CPUE simulated using the pattern of 

effort in the Japanese fishery. The column labeled nominal was the average “observed” CPUE. The other columns 

can be identified as follows: w includes values standardized with the habitat coefficient;  Gid includes a factor 

identifying the unique gear; Gf includes only hbf ; H0 includes a SDM-derived numeric covariate for average 

surface day-night habitat density; H100 includes a SDM-derived numeric covariate for day-night average habitat 

density from the surface to 100m; T0 includes a numeric variable for the surface temperature (°C); and T100 

includes a numeric variable for the average temperature from the surface to 100m. The column labeled kw contains 

means of abundance using the product of w and gear coefficients that are not possible with real data. JBL denotes 

Japanese, baseline SDM, and large population assumption. JBS denotes Japanese, baseline SDM, and small 

population assumption. 

 

 Error     

 Data    
Method JBL JBS Mean Rank 

Nominal 20.41 79.72 50.07 Data 

kw 0.06 0.07 0.06 JBL JBS All 

w+Gid 0.48 1.20 0.84 2 4 1 

w 5.83 14.26 10.05 8 8 7 

Gf 18.43 29.65 24.04 10 9 8 

w+Gf 0.48 1.20 0.84 2 4 1 

Gf+H0 3.88 7.12 5.50 7 7 6 

Gf+H100 0.75 1.20 0.98 5 2 3 

Gf+T0 3.32 6.68 5.00 6 6 4 

Gf+T100 0.71 1.17 0.94 4 1 5 

Gf+Hf 18.17 30.77 24.47 9 10 9 

w+Gf+Hf 0.62 1.23 0.92 3 5 2 

 

  

 Covariate method 

Data w+Gid w Gf w+Gf Gf+H0 Gf+H100 Gf+T0 Gf+T100 Gf+Hf w+Gf+Hf 

BBL 1 10 6 7 8 9 4 5 2 3 

BBS 4 10 9 6 8 7 5 3 2 1 

TTL 2 10 9 5 3 4 6 7 8 1 

TTS 2 10 6 1 4 3 5 7 9 8 

BTL 2 10 6 9 7 8 4 5 1 3 

BTS 5 10 7 9 6 8 4 3 2 1 

TBL 6 10 9 3 2 4 5 7 8 1 

TBS 1 10 7 6 5 2 4 8 9 3 

Mean 2 10 9 7 5 6 3 8 4 1 
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Figure 1. Observed and simulated catches for the population trend used in the simulations. 

 

 

 

 
 

Figure 2. Population trajectories used in the longline data simulations. 
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Figure 3. Temperature suitability curves for the alternative species distribution models used in this analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Content of data records used as input for analysis using a GLM and source of data for each field. The 

catch, effort (number of hooks), month, year and location are extracted from a source of catch and effort 

information. Matching gear related data (gear-g4 and hbf [hooks between floats]) are included from a source of 

gear information. Temperature at the surface (T0, the SST) and the average temperature from the surface to 100m 

(T100) are obtained from a source of environmental data. The value of the habitat at the surface, H0, and from the 

surface to 100m (H100) are computed using a Species Distribution Model (SDM) using important habitat variables. 

The habitat coefficient, w, is computed from gear characteristics and environmental data using the SDM for the 

time and place specified for the catch in the CPUE file. 
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Figure 5. Deterministic estimates of population size from the longline catches simulated using the distribution of 

Japanese fishing effort and assuming the baseline SDM and small population scenario. The data were summarized 

at 1° or 5° spatial resolution for the region 50S to 50N (trim) or 50S to 55N (Full). 
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Figure 6. True population trend and abundance indices from various treatments of simulated US longline catches 

for blue marlin. The simulations assumed the large population option and the baseline distribution pattern. 

Analyses assumed the baseline distribution. The nominal and determinist estimates are in panel A. Other panels 

apply various combinations of factors and numerical variables in GLM-based standardizations as indicated. 
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Figure 7. True population trend and abundance indices from various treatments of simulated US longline catches 

for blue marlin. The simulations assumed the small population option and the baseline distribution pattern. 

Analyses assumed the baseline distribution. The nominal and determinist estimates are in panel A. Other panels 

apply various combinations of factors and numerical variables in GLM-based standardizations as indicated. 
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Figure 8. True population trend and abundance indices from various treatments of US simulated longline 

catches for blue marlin. The simulations assumed the large population option and the thermophilic distribution 

pattern. Analyses assumed the thermophilic distribution. The nominal and determinist estimates are in panel 

A. Other panels apply various combinations of factors and numerical variables in GLM-based 

standardizations as indicated. 
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Figure 9. True population trend and abundance indices from various treatments of simulated US longline catches 

for blue marlin. The simulations assumed the small population option and the thermophilic distribution pattern. 

Analyses assumed the thermophilic distribution. The nominal and determinist estimates are in panel A. Other 

panels apply various combinations of factors and numerical variables in GLM-based standardizations as indicated. 
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Figure 10. True population trend and abundance indices from various treatments of simulated US longline catches 

for blue marlin. The simulations assumed the large population option and the baseline distribution pattern. 

Analyses assumed the thermophilic distribution. The nominal and determinist estimates are in panel A. Other 

panels apply various combinations of factors and numerical variables in GLM-based standardizations as indicated. 
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Figure 11. True population trend and abundance indices from various treatments of simulated US longline catches 

for blue marlin. The simulations assumed the small population option and the baseline distribution pattern. 

Analyses assumed the thermophilic distribution. The nominal and determinist estimates are in panel A. Other 

panels apply various combinations of factors and numerical variables in GLM-based standardizations as indicated. 
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Figure 12. True population trend and abundance indices from various treatments of simulated US longline catches 

for blue marlin. The simulations assumed the large population option and the thermophilic distribution pattern. 

Analyses assumed the baseline distribution. The nominal and determinist estimates are in panel A. Other panels 

apply various combinations of factors and numerical variables in GLM-based standardizations as indicated. 
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Figure 13. True population trend and abundance indices from various treatments of simulated US longline catches 

for blue marlin. The simulations assumed the small population option and the thermophilic distribution pattern. 

Analyses assumed the baseline distribution. The nominal and determinist estimates are in panel A. Other panels 

apply various combinations of factors and numerical variables in GLM-based standardizations as indicated. 
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Figure 14. True population trend and abundance indices from various treatments of longline catches for blue 

marlin simulated with fishing patterns similar to the Japanese fishery. The simulations assumed the large 

population option and the baseline distribution pattern. Analyses assumed the baseline distribution. The nominal 

and determinist estimates are in panel A. Other panels apply various combinations of factors and numerical 

variables in GLM-based standardizations as indicated. 
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Figure 15. True population trend and abundance indices from various treatments of longline catches for blue 

marlin simulated with fishing patterns similar to the Japanese fishery. The simulations assumed the small 

population option and the baseline distribution pattern. Analyses assumed the baseline distribution. The nominal 

and determinist estimates are in panel A. Other panels apply various combinations of factors and numerical 

variables in GLM-based standardizations as indicated. 


